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Abstract

Given three segments OP1,OP2,OP3 in a plane ω, which are not contained in a line,
we find a simple necessary and sufficient condition for the existence of two distinct ellipses
centered at O and circumscribing the three ellipses having as conjugate semi-diameters the
pairs (OP1, OP2), (OP2, OP3) and (OP3, OP1). We prove this result by showing that it is
equivalent to the existence of a secondary Pohlke’s projection closely related to the (always
existing) projection given by Pohlke’s fundamental theorem of oblique axonometry.
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1 Introduction

The presents paper is inspired by Toulias and Lefkaditis’s article [8], where the authors inves-
tigated from the analytic plane geometry’s point of view the problem of determining all the
concentric ellipses circumscribing a given set of three mutually conjugated ellipses.

This question arises from the fact that the existence of a circumscribing ellipse is an interme-
diate step in some of the proofs of Pohlke’s fundamental theorem of axonometry [6]. See [1], [2],
[3] and the references therein. Conversely, the existence of such an ellipse is also an immediate
consequence of this same theorem.

More precisely, let ω be a plane in the Euclidean space E3 and let OP1,OP2,OP3 ⊂ ω be
three segments which are not contained in a line. By Pohlke’s theorem we know that there are
a parallel projection Π : E3 → ω and three equal segments OQ1,OQ2,OQ3 such that

Π(OQi) = OPi (1 ≤ i ≤ 3) (1.1)

and

OQ1 ⊥ OQ2, OQ2 ⊥ OQ3, OQ3 ⊥ OQ1. (1.2)

Moreover, Π is unique up to symmetry with respect to ω. 1 The set of three segments OQ1,
OQ2,OQ3 is determined up to symmetry with respect to ω and up to symmetry with respect to
a plane through O and perpendicular to the direction of projection. 2 See [1], [4].

1 The symmetrical projection Π̄ : E3 → ω , defined by Π̄(P ) = Π(P̄ ) where P̄ is symmetric to P with respect
to ω, satisfies both (1.1) and (1.2) with Q̄1, Q̄2, Q̄3 instead of Q1, Q2, Q3.

2 The conditions (1.1), (1.2) continue to apply if we replace Q1, Q2, Q3 with their symmetrical Q′
1,Q

′
2,Q

′
3 with

respect to the plane through O and perpendicular to the direction of projection.
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Now, if OP1, OP2, OP3 are non-parallel, we may consider (OP1, OP2), (OP2, OP3) and
(OP3, OP1) as pairs of conjugate semi-diameters of three concentric ellipses EP1,P2 , EP2,P3 and
EP3,P1 respectively. So a consequence of the previous statement is that:

There exits an ellipse E centered at O and circumscribing EP1,P2, EP2,P3, EP3,P1.

Indeed, let S be the sphere centered at O and containing Q1,Q2,Q3. By (1.1), (1.2), the ellipses
EP1,P2 , EP2,P3 , EP3,P1 are the projections, via Π, of the great circles of S through the pairs
(Q1, Q2), (Q2, Q3) and (Q3, Q1) respectively. So it is enough to consider the ellipse E formed
from projecting onto ω the great circle of S in the plane π through O and perpendicular to the
direction of projection. Namely, E = Π(S ∩ π).

Definition 1.1 Let Π : E3 → ω be a parallel projection. We call Π a Pohlke’s projection for
OP1,OP2,OP3 if we can find equal segments OQ1,OQ2,OQ3 such that (1.1), (1.2) hold.

We also say that E ⊂ ω is a Pohlke’s ellipse for OP1, OP2, OP3 if E is obtained as above
from a Pohlke’s projection for OP1,OP2,OP3 .

By Pohlke’s theorem a Pohlke’s projection for OP1,OP2,OP3 always exists and it is unique up
to symmetry with respect to ω; the Pohlke’s ellipse for OP1,OP2,OP3 is unique.

Notation 1.2 In the following we will indicate with ΠP a Pohlke’s projection for OP1, OP2,
OP3 and possibly with Π̄P the symmetrical projection with respect to the plane ω. With EP we
will indicate the Pohlke’s ellipse for OP1,OP2,OP3 .

One may note that the existence of an ellipse E centered at O and circumscribing EP1,P2 ,
EP2,P3 , EP3,P1 does not require a Pohlke’s projection ΠP as above. But merely a parallel projection
Π : E3 → ω and equal segments OR1, OR2, OR3 such that Π(ORi) = OPi (1 ≤ i ≤ 3) with

i) OR1 ⊥ OR2 and OR2 ⊥ OR3 ;

ii) OR3 ⊥ OR1 or OR3 ⊥ OR′
1,

(1.3)

where the point R′
1 is symmetric to R1 with respect to the plane through O and perpendicular

to the direction of the projection. See the Lemma2.6 below.
Since condition (1.3) is weaker than (1.2), it is natural to ask if there are ellipses E ̸= Ep,

with center O, which circumscribe EP1,P2 , EP2,P3 , EP3,P1 . In this paper we will investigate the
existence of such ellipses by finding necessary and sufficient conditions for the existence of the
corresponding projections Π ̸= ΠP, Π̄P such as to satisfy (1.3) but not (1.2).

To this aim, we give below the relative definitions and then we state the main results.

Definition 1.3 Let OP1,OP2,OP3 ⊂ ω be three segments which are not contained in a line.

(1) A parallel projection Π : E3 → ω is a secondary Pohlke’s projection for OP1,OP2,OP3 if
there are equal segments OR1,OR2,OR3 such that

Π(ORi) = OPi (1 ≤ i ≤ 3), (1.4)

OR1 ⊥ OR2, OR2 ⊥ OR3 and OR3 ⊥ OR′
1, (1.5)

Ri ̸∈ π (i.e., Ri ̸= R′
i ) (1 ≤ i ≤ 3), (1.6)

where π is the plane through O and perpendicular to the direction of Π; the point R′
i is

symmetric to Ri with respect to π.
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(2) A secondary Pohlke’s ellipse for OP1,OP2,OP3 is an ellipse E ̸= EP, centered at O, which
circumscribes the three ellipses EP1,P2, EP2,P3, EP3,P1.

3

Theorem1.4 Suppose the segments OP1, OP2, OP3 are not contained in a line. Then the
following two properties are equivalent:

(1) there exists a secondary Pohlke’s projection Π for OP1,OP2,OP3 ;

(2) there exists a secondary Pohlke’s ellipse E for OP1,OP2,OP3 .

If OP1,OP2,OP3 are non-parallel, then (1) and (2) are both equivalent to

(3)
−−→
OP3 = h

−−→
OP1 + k

−−→
OP2 with h, k ̸= 0 satisfying

|h|+ |k| < 1 or
∣∣|h| − |k|

∣∣ > 1, (1.7)

or, equivalently,

(h+ k + 1)(h+ k − 1)(h− k + 1)(h− k − 1) > 0. (1.8)

If OP1,OP2,OP3 are non-parallel and (3) holds, the secondary Pohlke’s projection is unique up
to symmetry with respect to ω; the secondary Pohlke’s ellipse is unique and (with reference to
Definition 1.3) E = Π(S ∩ π) where S is the sphere, with center O, containing R1,R2,R3 .

Again assuming the segments OP1,OP2,OP3 are not contained in a line, we also have:

Theorem1.5 If any two of OP1,OP2,OP3 are parallel, then there are infinitely many secondary
Pohlke’s projections (ellipses) if these two segments are equal, none if they are different.

Remark 1.6 Condition (1.5) of Definition 1.3 and property (3) of Theorem1.4 may appear to
be non-symmetric with respect to the points P1, P2, P3. However, this is not the case:

(i) Suppose conditions (1.4), (1.5) are verified. Considering also the points R′
2 andR′

3, we can
write a cyclic relation of orthogonality:

OR1 ⊥ OR2, OR2 ⊥ OR3, OR3 ⊥ OR′
1,

OR′
1 ⊥ OR′

2, OR′
2 ⊥ OR′

3 , OR′
3 ⊥ OR1.

(1.9)

Hence, possibly replacing some Ri with R′
i and vice versa, from (1.9) it is clear that (1.5)

continues to holds for any permutation of the points P1, P2, P3 .

(ii) Let us consider property (3) of Theorem1.4. If h, k ̸= 0 satisfy one of the conditions of
(1.7), it is straightforward to see that one of the following must be verified:

|1/h|+ |k/h| < 1 or
∣∣|1/h| − |k/h|

∣∣ > 1. (1.10)

Thus, setting h′ = 1/h and k′ = −k/h, we have

−−→
OP1 = h′

−−→
OP3 + k′

−−→
OP2 , (1.11)

3 If two of segments OP1,OP2,OP3 are parallel (in particular if one of them vanishes) then we need to introduce
degenerate ellipses. See Definitions 2.1, 2.2 and 2.4 below.
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with h′, k′ ̸= 0 such that

|h′|+ |k′| < 1 or
∣∣|h′| − |k′|

∣∣ > 1. (1.12)

Similarly, we can see that
−−→
OP2 = h′′

−−→
OP1 + k′′

−−→
OP3 with h′′ = −h/k and k′′ = 1/k such

that |h′′|+ |k′′| < 1 or
∣∣|h′′| − |k′′|

∣∣ > 1. 2

Remark 1.7 Condition (1.6) of Definition 1.3 is necessary because if (1.6) fails, then Π is a
Pohlke’s projection for OP1,OP2,OP3; that is, Π = ΠP or Π = Π̄P.
Indeed, if OR1,OR2,OR3 are equal segments such that (1.4), (1.5) hold, but Rj = R′

j for some
1 ≤ j ≤ 3, then Π satisfies the conditions (1.1), (1.2) just by suitably renaming the points Ri,
R′

i (1 ≤ i ≤ 3). Conversely, if Π = ΠP or Π = Π̄P, then one cannot find equal segments OR1,
OR2,OR3 such that (1.4), (1.5) and (1.6) hold. See Claim 2.8. 2

Remark 1.8 With reference to Definition 1.3, suppose OP1,OP2,OP3 are non-parallel and such
that there exists a secondary Pohlke’s projection. Then we can obtain the explicit expressions
of R1,R2,R3 (as well as the direction of projection) if we know ∠(OR1, OR3). To this purpose
it is sufficient to apply the same arguments of [5]. 2

To conclude we point out that property (3) of Theorem 1.4 is equivalent to the conditions
established in [8] for the existence of a secondary common tangential ellipse. More precisely, to
the conditions given by formula (3.55) of [8, Theorem3.2] in the circular case (i.e., if one of the
three ellipses EP1,P2 , EP2,P3 , EP3,P1 is a circle; see section 3 below) and by the inequalities (3.60),
(3.61) of [8, Main Theorem] in the general case.

For instance, let us suppose that OP1,OP2,OP3 are non-parallel and

OP1 ⊥ OP2 with |OP1| = |OP2| = ρ > 0. (1.13)

Then it is not difficult to see that in (3) of Theorem1.4 condition (1.7) is verified iff

|OP3| = r , ∠(OP1, OP3) = φ, 4 (1.14)

with r > 0 and φ ∈ (0, φ̃) ∪ (π2 − φ̃, π2 ) ∪ (π2 ,
π
2 + φ̃) ∪ (π − φ̃, π), where

φ̃ =


1

2
arccos

(
ρr−2

√
2r2 − ρ2

)
if r ≥ ρ√

2
,

π

2
if r <

ρ√
2
.

(1.15)

But (1.15) corresponds to condition (3.55) of [8].
Furthermore, it is readily seen that condition (3.53) of [8], namely

1− 2

(
r

ρ

)2

+

(
r

ρ

)4

cos2 2φ > 0, (1.16)

is equivalent to (1.8). In fact, having (1.13) and
−−→
OP3 = h

−−→
OP1 + k

−−→
OP2 , it follows that(

r

ρ

)2

= h2 + k2, cosφ =
h√

h2 + k2
, cos 2φ =

h2 − k2

h2 + k2
. (1.17)

4 Here ∠(OP1, OP3) is the non-orinted, convex angle between OP1 and OP3.
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Hence, rewriting (1.16) using the expressions (1.17), we find the condition

1− 2h2 − 2k2 + h4 − 2h2k2 + k4 > 0, (1.18)

which coincides with (1.8).

2 Preliminaries

Let ω be a plane in the Euclidean space E3. Let O be a fixed point of ω.

Definition 2.1 Suppose OA,OB ⊂ ω are two segments such that only one of them can vanish.

(1) If OA ∦ OB we denote with EA,B the ellipse with center O and (OA,OB) as pair of
conjugate semi-diameters. We also say that EA,B is a non-degenerate ellipse.

(2) If OA ∥ OB (in particular if one of them vanishes) we denote with EA,B the straight line
segment VW ∥ OA,OB with O as midpoint and such that

|VW | = 2
√

|OA|2 + |OB|2 . (2.1)

We say that EA,B is the degenerate ellipse given by the pair of conjugate, parallel semi-
diameters (OA,OB). 5

For ρ > 0 we indicate with S(ρ) the sphere with center O and radius ρ:

S(ρ) = {P ∈ E3 : |OP | = ρ}. (2.2)

Definition 2.2 Let E ⊂ ω be a non-degenerate ellipse with center O.

(1) If E has semi-minor axis b > 0, for brevity we write SE = S(b).

(2) We indicate with Ẽ the set of points P ∈ ω enclosed by E. More precisely, if E has foci
F1, F2 and semi-major axis a > 0, then

Ẽ = {P ∈ ω : |F1P |+ |F2P | ≤ 2a}. (2.3)

(3) We indicate with ΠE : E3 → ω a parallel projection onto ω such that ΠE(SE) = Ẽ.
If Ω ⊂ Ẽ, for simplicity we set

Π̃−1
E (Ω) =

{
P ∈ E3 : ΠE(P ) ∈ Ω

}
∩ SE . (2.4)

(4) We denote with πE the plane through O perpendicular to the direction of the projection
ΠE and with CE the great circle of SE given by CE = SE ∩ πE .

Remark 2.3 We note, without proof, the following elementary facts:

5 See also [1], pp. 372-373.
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(a) Given a non-degenerate ellipse E ⊂ ω with center O, there are (in general) two oblique
projections, say ΠE and Π̄E , such that

ΠE(SE) = Π̄E(SE) = Ẽ .

These projections are symmetric with respect to ω in the sense that if the points P , P̄ are
symmetric with respect to ω, then ΠE(P ) = Π̄E(P̄ ) . Further, ΠE = Π̄E iff E is a circle;
in this case ΠE is the orthogonal projection onto ω. So we may say that ΠE is unique up
to symmetry with respect to ω. For this reason in the following we will not distinguish
between ΠE and Π̄E . We will limit ourselves to choose on of them, since the meaning will
always be clear from the context.

(b) Let Π : E3 → ω be a parallel projection and let π be the plane through O and perpen-
dicular to the direction of Π . If S is a sphere with center O, then

E = Π(S ∩ π)

is a non-degenerate ellipse, centered at O, such that SE = S and

Π = ΠE or Π = Π̄E . (2.5)

(c) Let E1, E2 ⊂ ω be two non-degenerate ellipses with center O. Then E1, E2 are homothetic
with respect to the center O iff ΠE1 = ΠE2 or ΠE1 = Π̄E2 .

(d) Given P ∈ Ẽ , we have
Π̃−1

E (P ) = {Q,Q′} ⊂ SE , (2.6)

with Q,Q′ symmetric with respect to πE ; moreover, Q = Q′ iff P ∈ E .
We note also that CE = Π̃−1

E (E) and ΠE(CE) = E .

Definition 2.4 Let E1, E2 ⊂ ω be two given ellipses with center O and let E1 be non-degenerate.

(1) If E2 is non-degenerate, we say that E1 circumscribes E2 if E2 ⊂ Ẽ1 and E1, E2 are tangent
at two points S, T which are symmetric with respect to O.

(2) If E2 = VW is degenerate, we say that E1 circumscribes E2 if V,W ∈ E1. In this case we
also say that E2 is tangent to E1 at the points V,W .

Before continuing we recall (see [7]) that affine transformations map pairs of conjugate semi-
diameters of a central conic into pairs of conjugate semi-diameters of the transformed conic
(for degenerate ellipses, in the sense of Definition 2.1, this is obvious). In the case of a circle
conjugate semi-diameters are perpendicular. We also remark that non-degenerate conics with
a given center O are uniquely determined by 3 (independent and compatible) conditions. For
instance if we know that a conic passes through two distinct points A,B and has tangent t at
one of them (provided OA ∦ OB, AB ∦ t and O ̸∈ t).

If Π : E3 → ω is a parallel projection onto the plane ω and if ω1 ⊂ E3 is any plane not
parallel to the direction of Π, then the restriction

Π
∣∣∣
ω1

: ω1 → ω

defines an invertible affine map between ω1 and ω.

Taking into account these facts, we notice the following elementary consequences:
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Claim2.5 Let E ⊂ ω be a non-degenerate ellipse with center O and let ΠE : E3 → ω be a
projection as in (3) of Definition 2.2. Suppose further that E circumscribes EA,B .

(a) If EA,B = E , then Π̃−1
E (A) = C , Π̃−1

E (B) = D with C,D ∈ CE such that OC ⊥ OD.

(b) If EA,B ̸= E and EA,B is non-degenerate then Π̃−1
E (EA,B) = C ∪ C′ where C, C′ are two

distinct great circles of SE , which are symmetric with respect to the plane πE . There exist

C,D ∈ C and C ′, D′ ∈ C′ such that {C,C ′} = Π̃−1
E (A), {D,D′} = Π̃−1

E (B) and

OC ⊥ OD, OC ′ ⊥ OD′. (2.7)

(c) If EA,B = VW is degenerate, Π̃−1
E (EA,B) = C is the great circle of SE in the plane through

VW and parallel to the direction of projection. Then, by condition (2.1), we can still
select C,C ′, D,D′ ∈ C such that {C,C ′} = Π̃−1

E (A), {D,D′} = Π̃−1
E (B) and (2.7) holds.

Proof of (a). By hypothesis OA,OB are conjugate semi-diameters of E . This implies that
OC and OD are conjugate semi-diameters of the circle CE . Hence they are perpendicular. 2

Proof of (b). In this case we have {A,B} ̸⊂ E and OA ∦ OB. Let us suppose, for instance,
that A ̸∈ E . Then Π̃−1

E (A) = {C,C ′} with C ̸= C ′ and the ellipses E , EA,B are tangent at a
point P ̸= A . Thus OA ∦ OP .
Setting Q = Π̃−1

E (P ), we define C and C′ as the great circles of SE through C,Q and C ′, Q
respectively. This definition gives C ̸= C′. Indeed, if C = C′, then C belongs to the plane
through OQ and parallel to the direction of projection (i.e., CC ′). But then OA = Π(OC) ∥
Π(OQ) = OP , contrary to our assumption. Besides, C and C′ are symmetric with respect to πE

because Q ∈ πE and C,C ′ are symmetric with respect to πE . Next, we observe that

ΠE(C) = ΠE(C′) = EA,B , (2.8)

because the three non-degenerate ellipses ΠE(C), ΠE(C′) and EA,B have the same center, they
pass through the point A, and they are tangent at the point P . Hence we can select D ∈ C,
D′ ∈ C′ such that {D,D′} = Π̃−1

E (B). Then (2.7) holds, because (OC,OD) and (OC ′, OD′) are
pairs of conjugate semi-diameters for C, C′ respectively. 2

Proof of (c). Let us suppose first |OA|, |OB| ̸= 0, that is A,B ̸∈ E . Then we have Π̃−1
E (A) =

{C,C ′}, Π̃−1
E (B) = {D,D′} with C ̸= C ′ and D ̸= D′. Setting X = Π̃−1

E (V ) and Y = Π̃−1
E (W ),

we easily see that XY is the diameter of C orthogonal to the direction of projection. Hence
XY ⊥ CC ′, DD′ and, by condition (2.1), the points

E = CC ′ ∩XY and F = DD′ ∩XY

are such that
|XY | = 2

√
|OE|2 + |OF |2 . (2.9)

Now, since EC, FD ⊥ XY, from (2.9) we easily deduce that

|OE| = |FD| , |OF | = |EC| and then
−−→
OE ·

−−→
OF = ±

−−→
EC ·

−−→
FD. (2.10)

Taking into account that C,C ′ are symmetric with respect to πE , we find

−−→
OC ·

−−→
OD =

(−−→
OE +

−−→
EC

)
·
(−−→
OF +

−−→
FD

)
=

−−→
OE ·

−−→
OF +

−−→
EC ·

−−→
FD, (2.11)

−−→
OC ′ ·

−−→
OD =

(−−→
OE −

−−→
EC

)
·
(−−→
OF +

−−→
FD

)
=

−−→
OE ·

−−→
OF −

−−→
EC ·

−−→
FD. (2.12)
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By the last of (2.10) we have OC ⊥ OD or OC ′ ⊥ OD and, by symmetry, OC ′ ⊥ OD′ or
OC ⊥ OD′. Hence, possibly renaming the points C, C ′ and D, D′, we can verify (2.7).

Finally, let us suppose |OA| = 0 (if |OB| = 0 the proof is the same). We have D = D′ ∈ CE
because B ∈ E . Further, CC ′ is the diameter of C parallel to the direction of projection. It
follows that OC ⊥ OD and OC ′ ⊥ OD. Thus (2.7) holds true with D′ = D. 2

From the previous definitions and Claim 2.5, we have:

Lemma2.6 Let OP1,OP2,OP3 ⊂ ω be three arbitrary segments which are not contained in a
line. Then the following hold:

(1) Let Π : E3 → ω be a parallel projection onto ω and let OQ1, OQ2, OQ3 be equal line
segments such that:

(i) Π(OQi) = OPi (1 ≤ i ≤ 3)

(ii) OQ1 ⊥ OQ2 , OQ2 ⊥ OQ3

and

(iii) OQ3 ⊥ OQ1 or (iv) OQ3 ⊥ OQ′
1

where, in case (iv), Q′
1 is symmetric to Q1 with respect to the plane π passing through

O and perpendicular to the direction of the projection. Then, denoting with S the sphere
with center O and containing the points Qi (1 ≤ i ≤ 3), E = Π(S ∩π) is a non-degenerate
ellipse circumscribing EP1,P2, EP2,P3 and EP3,P1.

(2) Conversely, let E be a non-degenerate ellipse with center O and circumscribing EP1,P2,
EP2,P3 and EP3,P1. Then, setting

Π = ΠE ,

we can find Q1,Q2,Q3 ∈ SE such that the segments OQ1,OQ2,OQ3 verify the conditions
(i),(ii) and (iii) or (iv) of (1).

Proof of (1). Let us suppose, for instance, that Π and OQ1,OQ2,OQ3 satisfy the conditions
(i), (ii) and (iv) of (1). To begin with, we set:

C = S ∩ π and E = Π(C). (2.13)

Being the parallel projection of the great circle C ⊂ π, E is a non-degenerate ellipse with center
O. Next, we consider the planes π1,2, π2,3 and π′

3,1 passing through O and the couples of points
(Q1, Q2), (Q2, Q3) and (Q3, Q

′
1) respectively. Let

C1,2 = S ∩ π1,2, C2,3 = S ∩ π2,3 and C′
3,1 = S ∩ π′

3,1 (2.14)

be the corresponding great circles of S. By assumption (i) of (1) and since

Π(Q′
1) = Π(Q1), (2.15)

it is clear that Π(C1,2), Π(C2,3), Π(C′
3,1) are three (possibly degenerate) ellipses with center O,

passing through the couples of points (P1, P2), (P2, P3) and (P3, P1) respectively.
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Moreover, by conditions (ii) and (iv), (OP1, OP2), (OP2, OP3) and (OP3, OP1) are (even in
the degenerate case) pairs of conjugate semi-diameters for Π(C1,2), Π(C2,3), Π(C′

3,1) respectively.
Hence we deduce that

Π(C1,2) = EP1,P2 , Π(C2,3) = EP2,P3 , Π(C′
3,1) = EP3,P1 . (2.16)

It follows that EP1,P2 , EP2,P3 , EP3,P1 ⊂ Ẽ = Π(S) and that EP1,P2 , EP2,P3 , EP3,P1 are tangent to E
since the great circles C1,2, C2,1, C′

3,1 must intersect C. Thus we have proved that E circumscribes
EP1,P2 , EP2,P3 , EP3,P1 .

If Π and OQ1,OQ2,OQ3 verify conditions (i), (ii) and (iii) of (1) the proof is similar. 2

Proof of (2). Let us suppose that the assumptions of (2) apply. Setting Π = ΠE , we must
show that there exist OQ1,OQ2,OQ3 which satisfy the hypothesis of (1) of Lemma2.6.

Starting with EP1,P2 and using the appropriate statement (i.e., (a), (b) or (c)) of Claim 2.5,
we can find Q1, Q2 ∈ SE such that

Π(Q1) = P1, Π(Q2) = P2 and OQ1 ⊥ OQ2 .

Then we consider EP2,P3 . Using Claim 2.5 once again, we find Q3 ∈ SE such that

Π(Q3) = P3 and OQ2 ⊥ OQ3 .

In this way the conditions (i), (ii) of part (1) are certainly verified.
Finally, let us consider EP3,P1 . In this cases, since we have already choose Q1 ∈ Π̃−1

E (P1) and

Q3 ∈ Π̃−1
E (P3), by Claim 2.5 we can only say that

Q3 ⊥ Q1 or Q3 ⊥ Q′
1 , (2.17)

where Q′
1 is symmetric to Q1 with respect to the plane πE .

Hence at least one of the two conditions (iii), (iv) of (1) must be verified. 2

Remark 2.7 In proving (2) of Lemma2.6 it is worthwhile to note the following:

(a) If Pi ∈ E for some 1 ≤ i ≤ 3, then both cases of (1) can be verified. More precisely, if
Q1,Q2,Q3 are such that (i), (ii), (iii) hold, then possibly after exchanging Qj with Q′

j for
some 1 ≤ j ≤ 3 , we obtain (i), (ii), (iv). Similarly, if (i), (ii), (iv) hold, after exchanging
Qj with Q′

j for some 1 ≤ j ≤ 3 , we get (i), (ii), (iii).
For instance, let us suppose that (i), (ii), (iii) hold and that P2 ∈ E . Then, since Q2 = Q′

2 ,
by symmetry with respect to the plane πE we can write:

OQ1 ⊥ OQ2 , OQ2 ⊥ OQ′
3 , OQ′

3 ⊥ OQ′
1 . (2.18)

Thus, by exchanging Q3 with Q′
3 , we have (i), (ii), (iv).

(b) Conversely, if both cases of (1) can be verified, up to exchanging Qj with Q′
j for some

1 ≤ j ≤ 3 , then Qi = Q′
i and Pi ∈ E for some 1 ≤ i ≤ 3.

In fact, suppose the points Q1,Q2,Q3 are such that both cases of (1) can be verified up
to exchanging Qj with Q′

j for some 1 ≤ j ≤ 3. In this situation we can easily see that

OQh ⊥ OQk and OQh ⊥ OQ′
k , (2.19)
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for some h ̸= k , with 1 ≤ h, k ≤ 3 . 6

Now, if Qk = Q′
k , then Qk ∈ πE and Pk ∈ E . Otherwise, QkQ

′
k is a nonzero segment

parallel to the direction of projection and from (2.19) it follows that

OQh ⊥ QkQ
′
k . (2.20)

By definition, this means that Qh ∈ πE . Thus Qh = Q′
h and Ph ∈ E . 2

Summing up, we have showed that in proving (2) of Lemma2.6 one can verify both the
cases of (1) (that is (i), (ii), (iii) or (i), (ii), (iv)) possibly up to exchanging some Qj with
Q′

j ⇔ at least one of the points P1, P2, P3 belongs to E.

Continuing to assume that OP1, OP2, OP3 are not contained in a line, we conclude this
section by showing that if a projection Π : E3 → ω satisfies the conditions of (1) of Lemma2.6,
then Π is either a Pohlke’s projection or a secondary Pohlke’s projection for OP1,OP2,OP3 .

Claim2.8 Let Π : E3 → ω be parallel projection. Suppose there exist equal line segments
OR1,OR2,OR3 such that:

Π(ORi) = OPi (1 ≤ i ≤ 3),

OR1 ⊥ OR2 , OR2 ⊥ OR3 and OR3 ⊥ OR′
1.

Then the following facts are equivalent:

(a) Π is a Pohlke’s projection for OP1,OP2,OP3 ;

(b) Ri ∈ π (i.e., Ri = R′
i ) for some 1 ≤ i ≤ 3 .

Proof (b) ⇒ (a). If Ri = R′
i for some 1 ≤ i ≤ 3 (where R′

i is symmetric to Ri with respect to
the plane π) we can easily see that Π satisfies the conditions (1.1), (1.2) for a suitable choice of
Qj ∈ {Rj , R

′
j} (1 ≤ j ≤ 3). For instance, if R2 = R′

2 , we can choose:

Q1 = R′
1, Q2 = R2, Q3 = R3 . (2.21)

The other cases are similar. Thus Π = ΠP or Π = Π̄P .

Proof (a) ⇒ (b). Conversely, assume that Π = ΠP or Π = Π̄P . Then there exist equal
segments OQ1,OQ2,OQ3 such that conditions (1.1), (1.2) hold.
We may suppose that Qi ∈ S and Ri ∈ S̃ (1 ≤ i ≤ 3) where S and S̃ are suitable spheres with
center O. By (1) of Lemma2.6,

E = Π(S ∩ π) and Ẽ = Π(S̃ ∩ π) (2.22)

are two ellipses circumscribing EP1,P2 , EP2,P3 and EP3,P1 . Since E and Ẽ are homothetic with
respect to the point O, we deduce that E = Ẽ . Thus S = S̃ and{

Ri, R
′
i

}
=
{
Qi, Q

′
i

}
(1 ≤ i ≤ 3). (2.23)

6 Indeed, let {Ri, R
′
i} = {Qi, Q

′
i} for 1 ≤ i ≤ 3. Also, assume that both Q1 ⊥ Q2, Q2 ⊥ Q3, Q3 ⊥ Q1 and

R1 ⊥ R2, R2 ⊥ R3, R3 ⊥ R′
1 are verified. Then, rewriting the second expression in terms of Qi and Q′

i , we can
see that (2.19) holds for any feasible choice of Ri, R

′
i .
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This means that the points Q1,Q2,Q3 are such that both the cases (i), (ii), (iii) and (i), (ii), (iv)
of (1) of Lemma2.6 can be verified, possibly up to exchanging Qj with Q′

j for some 1 ≤ j ≤ 3 .
Hence, for some h ̸= k (1 ≤ h, k ≤ 3 ), we must have

OQh ⊥ OQk and OQh ⊥ OQ′
k , (2.24)

as we have already seen in (b) of Remark 2.7. This implies that Qi ∈ π for some 1 ≤ i ≤ 3.
Thus, by (2.23), Ri ∈ π for some 1 ≤ i ≤ 3. 2

Next, repeatedly applying the implications (a) ⇒ (b) and (b) ⇒ (a) of Claim 2.8 and taking
into account Definitions 1.1 and 1.3, we can prove that:

Lemma2.9 If Π : E3 → ω satisfies the conditions of (1) of Lemma2.6, then Π is either a
Pohlke’s projection or a secondary Pohlke’s projection (but not both) for OP1, OP2, OP3 . In
particular, a secondary Pohlke’s projection cannot be also a Pohlke’s projection.

Proof. We distinguish three cases:

If Π verifies the conditions (i), (ii) and (iii) of (1) of Lemma2.6, then Π = ΠP or Π = Π̄P.
Moreover, by the implication (a) ⇒ (b) of Claim 2.8, Π is not a secondary Pohlke’s projection
for OP1, OP2, OP3 because if OR1, OR2, OR3 are equal segments such that (1.4), (1.5) hold,
then condition (1.6) cannot be verified.

Next, let us suppose that Π verifies the conditions (i), (ii) and (iv) of (1) of Lemma2.6.

If Qi ∈ π for some 1 ≤ i ≤ 3, then Π = ΠP or Π = Π̄P by the implication (b) ⇒ (a) of
Claim 2.8. Further, using the implication (a) ⇒ (b) of Claim 2.8 as in the previous case, we
deduce that Π is not a secondary Pohlke’s projection for OP1,OP2,OP3.

If Qi ̸∈ π for 1 ≤ i ≤ 3, then Π is clearly a secondary Pohlke’s projection for OP1,OP2,OP3.
Furthermore, once again from Claim 2.8, applying the contrapositive implication ¬ (b) ⇒ ¬ (a),
we deduce that Π cannot be a Pohlke’s projection for OP1,OP2,OP3 . 2

3 Pohlke’s type projections in the circular case

Let OP1,OP2,OP3 ⊂ ω be three segments which are not contained in a line.

We consider now the problem of finding Pohlke’s and secondary Pohlke’s projections for
OP1,OP2,OP3 assuming that

OP1 ⊥ OP2 and |OP1| = |OP2| = ρ > 0. (3.1)

That is, EP1,P2 is a circle with center O and radius ρ.

In this case it is clear that an ellipse E with center O and circumscribing EP1,P2 must have
semi-minor axis b = ρ. Hence we have

SE = S(ρ). (3.2)
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Pohlke’s projection

We already know that there always exists a Pohlke’s projection ΠP, which is unique up to
symmetry with respect to ω. In view of (3.1), (3.2) it is easy to find it explicitly.

Indeed, since P1, P2 ∈ SE , we must have P1 = Q1 or Q′
1 and P2 = Q2 or Q′

2. Having
OP1 ⊥ OP2, it is not restrictive to define:

Q1 = P1 , Q2 = P2 (3.3)

(or, equivalently, Q′
1 = P1 and Q′

2 = P2).
7

The Pohlke’s projection for OP1,OP2,OP3 is then determined by the choice of Q3 ∈ S(ρ)
such that Π(Q3) = P3 and OQ3 ⊥ OQ1, OQ2 . It turns out that we must take

−−→
OQ3 = ± 1

ρ

−−→
OP1 ∧

−−→
OP2 , (3.4)

and that the direction of projection is given by the nonzero vector
−−−→
Q3P3, because Q3 ̸∈ ω.

Choosing the plus and then the minus sign in (3.4), we obtain two Pohlke’s projections
ΠP, Π̄P (according to Notation 1.2) which are clearly symmetric with respect to the plane ω.

We may conclude that there is unique Pohlke’s projection, up to symmetry with respect to
ω, and that there are no restrictions on the segment OP3 ⊂ ω.

Secondary Pohlke’s projection

Still assuming (3.1), we shall see that there exists a secondary Pohlke’s projection if and only
if OP3 ⊂ ω satisfies suitable conditions. To begin with, for secondary Pohlke’s projection it is
necessary to set

R1 = P1 , R2 = P2 (3.5)

(or, equivalently, R′
1 = P1 and R′

2 = P2).
8

Having fixed R1, R2 as in (3.5) and taking into account Definition 1.3, we need to find
R3, R

′
3 ∈ S(ρ) such that:

(1) OP2 ⊥ OR3 and OP1 ⊥ OR′
3 (i.e., OR3 ⊥ OP ′

1 );

(2) R3 ̸= R′
3 (i.e., R3 ̸∈ π);

(3) R3R
′
3 ̸⊥ OP1 and R3R

′
3 ̸⊥ OP2 , because we require that R1, R2 ̸∈ π ;

(4) R3R
′
3 ∦ ω , because R3R

′
3 gives the direction of projection onto ω ;

(5) R3, R
′
3, P3 are collinear (i.e., Π(R3) = Π(R′

3) = P3).

7 If, for instance, we try to define Q1 = P1 and Q′
2 = P2 and if this choice works, then it follows that

OQ1 ⊥ OQ2 and OQ1 ⊥ OQ′
2. Hence Q1 = Q′

1 or Q2 = Q′
2 , by the same argument used in (b) of Remark 2.7.

This means that we have Q′
1 = P1, Q

′
2 = P2 in the first case and Q1 = P1, Q2 = P2 in the second one. In

conclusion, the choice Q1 = P1, Q
′
2 = P2 (when it works) is equivalent to (3.3).

8 In fact, if we try to define R1 = P1 and R′
2 = P2 (or, equivalently, R′

1 = P1 and R2 = P2), then we have
OR1 ⊥ OR2 and OR1 ⊥ OR′

2. Hence R1 = R′
1 or R2 = R′

2, by the same argument used in (b) of Remark 2.7.
Thus Π cannot be a secondary Pohlke’s projection.
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Remark 3.1 We may observe that:

(1) ∧ (2) ∧ (3) ⇒
−−→
OR3,

−−−→
OR′

3 ∦
−−→
OP1 ∧

−−→
OP2 .

9 (3.6)

In view of (3.4), this immediately implies that Π ̸= ΠP, Π̄P . 2

To proceed further, we introduce a cartesian system of coordinate axes x, y, z oriented in
space and scaled such that ω is the plane z = 0 ,

O =

 0
0
0

, P1 =

 1
0
0

, P2 =

 0
1
0

 and P3 =

 x
y
0

. (3.7)

In particular, in this system we have

−−→
OP3 = x

−−→
OP1 + y

−−→
OP2 . (3.8)

Then the conditions from (1) to (4) are satisfied iff R3, R
′
3 are of the form

R3 =

 cosα
0

sinα

 and R′
3 =

 0
cosβ
sinβ

, (3.9)

with α, β such that
cosα, cosβ ̸= 0 and sinα ̸= sinβ, (3.10)

while taking into account (3.9), condition (5) holds iff x
y
0

 =

 cosα
0

sinα

+ t

 − cosα
cosβ

sinβ − sinα

 for some t ∈ R. (3.11)

Now, assuming that (3.10) holds, we will study the solvability of the system (3.11). We will
distinguish three cases to this aim:

Case x = 0. Since cosα ̸= 0, the first equation of (3.11) gives t = 1. Then, considering also
the third equation, we have sinβ = 0. Thus, cosβ = ±1 and sinα ̸= 0. Summarizing up, when
x = 0 system (3.11) is solvable iff

P3 = ±

 0
1
0

. (3.12)

If (3.12) holds, then we have

R3 =

 cosα
0

sinα

 and R′
3 = P3 , (3.13)

9 If OR3 ∥
−−→
OP1 ∧

−−→
OP2, then OP1 ⊥ OR3. By the conditions (1) and (2) it follows that R3R

′
3 ⊥ OP1, contrary

to (3). If OR′
3 ∥

−−→
OP1 ∧

−−→
OP2 we can argue similarly.
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with α such that cosα ̸= 0, ± 1. This means that there are no secondary Pohlke’s projections
if (3.12) fails, and infinitely many if (3.12) holds. 2

Case y = 0. Similar reasoning leads to the result that when y = 0 (3.11) is solvable iff

P3 = ±

 1
0
0

. (3.14)

If (3.14) holds, then we have

R3 = P3 and R′
3 =

 0
cosβ
sinβ

, (3.15)

with β such that cosβ ̸= 0, ± 1. Hence there are no secondary Pohlke’s projections if (3.14)
fails, and infinitely many if (3.14) holds. 2

Summing up the previous cases:

Lemma3.2 If condition (3.1) is verified and if OP3 ∥ OP1 (or ∥OP2) then there are infinitely
many secondary Pohlke’s projection for OP1, OP2, OP3 if |OP3| = |OP1| (or |OP2|), none if
|OP3| ̸= |OP1| (or |OP2|).

Case x, y ̸= 0. If x, y ̸= 0 we have an additional condition on α, β. Namely,

sinα, sinβ ̸= 0. (3.16)

Indeed, if sinα = 0, (3.10) and the third equation of (3.11) give t = 0. Then, the second
equation of (3.11) implies y = 0 , contrary to our assumption. Similarly we find that sinβ ̸= 0.

Taking into account this fact, we will deduce a set of necessary conditions for a point P3 =
t(x, y, 0) to be collinear with R3, R

′
3 (i.e., to satisfy (3.11) for some t ∈ R) when (3.10) and

(3.16) are verified. After that, we will prove that these conditions are also sufficient.

To begin with, by (3.10) and the third equation of (3.11), we have

t =
sinα

sinα− sinβ
. (3.17)

Applying (3.16) it follows that t ̸= 0, 1 and that

x = cosα− cosα sinα

sinα− sinβ
⇒ x ̸= 0, cosα; (3.18)

y =
cosβ sinα

sinα− sinβ
⇒ y ̸= 0, cosβ. (3.19)

Then
x

cosα
+

y

cosβ
= 1. (3.20)
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From (3.19), (3.20) we obtain

cosα =
x cosβ

cosβ − y
,

sinα =
y sinβ

y − cosβ
,

(3.21)

because, by (3.19), we know that y ̸= cosβ .
Next, since cos2 α+ sin2 α = 1, from (3.21) we have

x2 cos2 β + y2 sin2 β = (y − cosβ)2. (3.22)

Hence, simplifying the expression above, we find[(
x2 − y2 − 1) cosβ + 2y

]
cosβ = 0. (3.23)

Since cosβ ̸= 0 and (by (3.19)) y ̸= 0 , we deduce that:

x2 − y2 − 1 ̸= 0, (3.24)

and then

cosβ =
−2y

x2 − y2 − 1
. (3.25)

Noting that x ̸= 0, cosα (see (3.18)) by similar arguments we can derive that

y2 − x2 − 1 ̸= 0 (3.26)

and

cosα =
−2x

y2 − x2 − 1
. (3.27)

Finally, since (3.16) is equivalent to cosα, cosβ ̸= ± 1 , from the expressions (3.25), (3.27) we
deduce the conditions:

−1 <
−2y

x2 − y2 − 1
< 1, (3.28)

−1 <
−2x

y2 − x2 − 1
< 1. (3.29)

Summing up, if (3.10), (3.16) are verified and if P3 = t(x, y, 0) is given by formula (3.11),
then x, y ̸= 0 and the necessary conditions (3.24), (3.26) and (3.28), (3.29) are satisfied.

Remark 3.3 Note that cosα, cosβ are uniquely determined and they are rational functions of
x, y. We haven’t similar expressions for sinα, sinβ . But we can easily see that

sinβ

sinα
= − y2 − x2 − 1

x2 − y2 − 1
. (3.30)

Indeed, from (3.19) we have
sinβ

sinα
= 1− cosβ

y
. (3.31)

Then, by substituting (3.25) into (3.31), we get (3.30).
We will use this fact in proving that for x, y ̸= 0 the necessary conditions (3.24), (3.26) and

(3.28), (3.29) are also sufficient for a point P3 =
t(x, y, 0) to be collinear with R3, R

′
3 given by

(3.9) for suitable α, β satisfying (3.10), (3.16). 2
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In order to better describe the solution region of the inequalities (3.24), (3.26) and (3.28), (3.29)
we prove the following:

Lemma3.4 The inequalities (3.24), (3.26) and (3.28), (3.29) are verified if and only if

|x|+ |y| < 1 or
∣∣|x| − |y|

∣∣ > 1. (3.32)

Proof. We must show that the solution region of the inequalities (3.24), (3.26) and (3.28), (3.29)
is given by the conditions (3.32). First of all, we can see that:

−1 <
−2y

x2 − y2 − 1
< 1 ⇐⇒ (I)


x2 − (y − 1)2

x2 − y2 − 1
> 0

x2 − (y + 1)2

x2 − y2 − 1
> 0

(3.33)

and

−1 <
−2x

y2 − x2 − 1
< 1 ⇐⇒ (II)


y2 − (x− 1)2

y2 − x2 − 1
> 0

y2 − (x+ 1)2

y2 − x2 − 1
> 0

(3.34)

Both systems of inequalities (I) of (3.33) and (II) of (3.34) are invariant under symmetry
with respect to the coordinate axes, i.e., on replacing (x, y) with (±x,±y). Besides, it is evident
that we can obtain system (II) of (3.34) from (I) of (3.33) by permutation of the variables x, y
and vice versa. So it is sufficient to solve only one of them and for (x, y) in the first quadrant.
For instance, let us consider system (II) of (3.34). For x, y ≥ 0 we easily have:

(II)


y2 − (x− 1)2

y2 − x2 − 1
> 0

y2 − (x+ 1)2

y2 − x2 − 1
> 0

⇐⇒ (III)


y − |x− 1|
y2 − x2 − 1

> 0

y − x− 1

y2 − x2 − 1
> 0

(3.35)

because in the first quadrant

y2 − (x− 1)2 > 0 ⇔ y − |x− 1| > 0, (3.36)

y2 − (x+ 1)2 > 0 ⇔ y − x− 1 > 0. (3.37)

Thus it is enough to solve system (III) of (3.35) for x, y ≥ 0. Noting that y−|x−1| ≥ y−x−1
if x ≥ 0 , we can see that for x, y ≥ 0 the following hold:

(i) (x, y) is a solution of (III) such that y2 − x2 − 1 > 0 iff y > x+ 1, that is y − x > 1;

(ii) (x, y) is a solution of (III) such that y2 − x2 − 1 < 0 iff y < |x− 1| , that is

x+ y < 1 or y − x < −1. (3.38)
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Hence we deduce that the solution region, say Ω , of system (III) of (3.35) (that is, system (II)
of (3.34)) in the first quadrant is given by the pairs x, y ≥ 0 such that

x+ y < 1 or |y − x| > 1. (3.39)

Since Ω is symmetric with respect to x and y, it follows that Ω is also the solution region of
system (I) of (3.33) in the first quadrant. Finally, taking into account the symmetry of both
systems (I) of (3.33) and (II) of (3.34) with respect to the coordinate axes, the solution region
of the inequalities (3.24), (3.26) and (3.28), (3.29) is given by the conditions (3.32). 2

So far, we have proved that:

Lemma3.5 If (3.10), (3.16) hold and if P = t(x, y, 0) is given by (3.11), then x, y ̸= 0 and

|x|+ |y| < 1 or
∣∣|x| − |y|

∣∣ > 1. (3.40)

The converse is also true:

Lemma3.6 If a point P = t(x, y, 0) has coordinates x, y ̸= 0 such that (3.40) holds, then P is
given by formula (3.11) with α, β satisfying (3.10), (3.16).

Proof. By condition (3.40) and Lemma3.4 we can set

cosα =
−2x

y2 − x2 − 1
and cosβ =

−2y

x2 − y2 − 1
. (3.41)

We have −1 < cosα, cosβ < −1 , i.e., sinα, sinβ ̸= 0. Besides cosα, cosβ ̸= 0 because we
are assuming x, y ̸= 0 . Then the first two equations of (3.11) are satisfied with

t =
y2 − x2 + 1

2
. (3.42)

With t as in (3.42) the third equation of (3.11) is verified iff

sinβ

sinα
= − y2 − x2 − 1

x2 − y2 − 1
. (3.43)

But using (3.41) to write explicitly sin2 α and sin2 β, it follows that

sin2 α =
g(x, y)

(y2 − x2 − 1)2
and sin2 β =

g(x, y)

(x2 − y2 − 1)2
, (3.44)

where

g(x, y)
def
= (x+ y + 1)(x+ y − 1)(x− y − 1)(x− y + 1) > 0, (3.45)

if (3.40) holds. Thus (3.43) is verified iff

(sinα, sinβ) = ±

( √
g(x, y)

y2 − x2 − 1
,
−
√

g(x, y)

x2 − y2 − 1

)
. (3.46)

Finally, it is immediate that (3.43) implies sinα ̸= sinβ. So both conditions (3.10) and
(3.16) are satisfied. 2
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Remark 3.7 It is easy to verify that (3.40) holds if and only if

(x+ y + 1)(x+ y − 1)(x− y − 1)(x− y + 1) > 0. (3.47)

Thus the conditions (1.7) and (1.8) are equivalent. 2

As we have already observed,

x, y ̸= 0 and (3.10), (3.11) =⇒ (3.16),

so we may conclude the following:

Let us suppose x, y ̸= 0. Then system (3.11) with the conditions (3.10) is solvable ⇔ (3.40)
holds. Moreover, if x, y ̸= 0 and (3.40) is verified, then

R3 =
1

y2 − x2 − 1

 −2x
0

±
√
g(x, y)

, (3.48)

where g(x, y) is the function defined by (3.45).

In particular, choosing the plus and then the minus sign in (3.48), we obtain two secondary
Pohlke’s projections Π, Π̄ which are symmetric with respect to the plane ω. Noting that x, y ̸=
0 ⇔ OP3 ∦ OP1, OP2, we have:

Lemma3.8 If (3.1) is verified and if OP3 ∦ OP1, OP2, then there exists a secondary Pohlke’s
projection for OP1,OP2,OP3 if and only if

−−→
OP3 = x

−−→
OP1 + y

−−→
OP2 , (3.49)

with x, y such that (3.40) holds. Besides, the secondary Pohlke’s projection (when it exists) is
unique up to symmetry with respect to the plane ω.

4 Proof of Theorem1.4

(2) ⇒ (1). Taking into account (2) of Lemma2.6 and Lemma2.9, we can say that:

if E is a secondary Pohlke’s ellipse for OP1, OP2, OP3, then ΠE is a secondary Pohlke’s
projection for OP1,OP2,OP3.

Indeed, by (2) of Lemma2.6, ΠE verifies the assumptions of (1) of Lemma2.6. But, having
E = ΠE(SE ∩ πE ) with E ̸= EP, ΠE cannot be a Pohlke’s projection for OP1,OP2,OP3. Thus, by
Lemma2.9, ΠE must be a secondary Pohlke’s projection for OP1,OP2,OP3.

(1) ⇒ (2). It follows from (1) of Lemma2.6 and from Lemma2.9. Indeed, let Π be a secondary
Pohlke’s projection for OP1,OP2,OP3. By Definition 1.3 there are equal segments OR1,OR2,
OR3 such that (1.4), (1.5) and (1.6) hold. Then Π satisfies the conditions (i), (ii) and (iv) of
(1) of Lemma2.6 with Qi = Ri (1 ≤ i ≤ 3) and, by Lemma2.9, Π is not a Pohlke’s projection
for OP1,OP2,OP3. Now, let us consider the ellipse

E = Π(S ∩ π), (4.1)
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where S is the sphere, centered at O, containing the points R1,R2,R3 and π is the plane through
O and perpendicular to the direction of Π. By (1) of Lemma2.6, E circumscribes EP1,P2 , EP2,P3 ,
EP3,P1 . Moreover, E ̸= EP because Π is not a Pohlke’s projection. Thus, by Definition 1.3, E is
a secondary Pohlke’s ellipse for OP1,OP2,OP3 .

(1), (2) ⇔ (3). To prove the equivalence of the conditions (1), (2) with (3) when OP1, OP2

and OP3 are non-parallel, we resort to an appropriate circular case.
More precisely, let N1, N2 ∈ ω such that

ON1 ⊥ ON2 and |ON1| = |ON2| = 1. (4.2)

Since OP1 ∦ OP2, we may consider the affine transformation Φ : ω → ω such that

Φ(O + x
−−→
OP1 + y

−−→
OP2 )

def
= O + x

−−→
ON1 + y

−−→
ON2 for x, y ∈ R. (4.3)

It is clear that Φ(P1) = N1, Φ(P2) = N2. Besides, if
−−→
OP3 = h

−−→
OP1 + k

−−→
OP2 , then

N3
def
= Φ(P3) = O + h

−−→
ON1 + k

−−→
ON2 . (4.4)

Hence −−→
ON3 = h

−−→
ON1 + k

−−→
ON2 and ON3 ∦ ON1, ON2 , (4.5)

because OP3 ∦ OP1, OP2 (i.e., h, k ̸= 0).
As we already remarked after Definition 2.4, an affine transformation maps pairs of conjugate

semi-diameters of a central conic into pairs of conjugate semi-diameters of the transformed conic.
This means that Φ(EP1,P2) = EN1,N2 , Φ(EP2,P3) = EN2,N3 and Φ(EP3,P1) = EN3,N1 . Further, if E
is an ellipse centered at O which circumscribes the three ellipses EP1,P2 , EP2,P3 and EP3,P1 , then
Φ(E) is an ellipse centered at O which circumscribes EN1,N2 , EN2,N3 and EN3,N1 .

Now let us suppose that (2) holds, namely that there exists a secondary Pohlke’s ellipse E
for OP1,OP2,OP3. Then E and EP are two different ellipses centered at O which circumscribe
EP1,P2 , EP2,P3 , EP3,P1 . Consequently

Φ(E) and Φ(EP) (4.6)

are two different ellipses centered at O which circumscribes EN1,N2 , EN2,N3 , EN3,N1 . Since the
Pohlke’s ellipse for ON1,ON2,ON3 is unique, one of them must be a secondary Pohlke’s ellipse
for ON1, ON2, ON3. Hence, having already proved that (1) ⇔ (2), there exists a secondary
Pohlke’s projection for ON1,ON2,ON3. By (4.2) and (4.5) we can apply Lemma3.8 to ON1,
ON2,ON3. Thus we conclude that h, k must satisfy the condition (1.7).

Conversely, let us suppose that (3) (i.e., condition (1.7)) holds. Then, by Lemma3.8, there
exists a secondary Pohlke’s projection for ON1,ON2,ON2 . By the equivalence (1) ⇔ (2), we
deduce the existence of a secondary Pohlke’s ellipse for ON1, ON2, ON3 . Then we have two
different ellipses centered at O, say Ẽ and ẼP (with ẼP the Pohlke’s ellipses for ON1,ON2,ON2)
which circumscribe EN1,N2 , EN2,N3 , EN3,N1 . This means that

Φ−1(Ẽ) and Φ−1(ẼP) (4.7)

are two different ellipses centered at O which circumscribes EP1,P2 , EP2,P3 , EP3,P1 . Since the
Pohlke’s ellipse is unique, one of them must be a secondary Pohlke’s ellipse for OP1,OP2,OP3 .
Thus, we have proved that (2) holds.
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Uniqueness. Suppose OP1,OP2,OP3 are non-parallel and condition (3) holds.

Having already proved that (1) ⇔ (2), it is enough to demonstrate the uniqueness of the
secondary Pohlke’s ellipse. By contradiction, if E1 and E2 are two distinct secondary Pohlke’s
ellipses for OP1,OP2,OP3, then

Φ(E1), Φ(E2) and Φ(EP) (4.8)

are three distinct ellipses circumscribing EN1,N2 , EN2,N3 , EN3,N1 . Since the Pohlke’s ellipse for
ON1,ON2,ON3 is unique, two of them must be secondary Pohlke’s ellipses for ON1,ON2,ON3.
But if Ê and Ě are these two ellipses, then

ΠÊ and ΠĚ (4.9)

must be two distinct (that is, ΠÊ ̸= ΠĚ , Π̄Ě ; see (a) of Remark 2.3) secondary Pohlke’s projec-
tions for the three segments ON1,ON2,ON3 and, by Lemma3.8, this contradicts the uniqueness
property of the secondary Pohlke’s projection in the circular case. 2

5 Proof of Theorem1.5

Let us suppose, for instance, that OP1 ∦ OP2 and OP2 ∥ OP3. With the same notations of the
proof of Theorem1.4, we consider the affine transformation Φ : ω → ω defined in (4.2), (4.3).
Then we distinguish two cases:

1)
−−→
OP3 = ±

−−→
OP2 . We have

−−→
ON3 = ±

−−→
ON2 and by Lemma3.2 there are infinite, distinct sec-

ondary Pohlke’s projections for ON1,ON2,ON3. Hence, by the equivalence (1) ⇔ (2) of Theo-
rem1.4, there are infinite, distinct secondary Pohlke’s ellipses Ẽ circumscribing EN1,N2 , EN2,N3

and EN3,N1 . Applying the affine transformation Φ−1, we find infinite secondary Pohlke’s ellipses
E = Φ−1(Ẽ) for OP1,OP2,OP3 and finally infinite, distinct secondary Pohlke’s projections.

2)
−−→
OP3 ̸= ±

−−→
OP2 . We argue by contradiction: if there is a secondary Pohlke’s projection for

OP1, OP2, OP3 then, by the equivalence (1) ⇔ (2) of Theorem1.4, there is also a secondary
Pohlke’s ellipse E for OP1,OP2,OP3. As in the proof of (1), (2) ⇔ (3) of Theorem1.4, applying
the transformation Φ we deduce the existence of a secondary Pohlke’s ellipse Ẽ for ON1,ON2,
ON3. Hence, once again by the equivalence (1) ⇔ (2), we conclude that there exists a secondary

Pohlke’s projection for ON1,ON2,ON3 . But this fact contradicts Lemma3.2, because
−−→
ON3 ∥

−−→
ON2 and

−−→
ON3 ̸= ±

−−→
ON2 . 2
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