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Abstract

We give here formulae for determining the Pohlke’s ellipse and the secondary Pohlke’s
ellipse of a triad of segments in a plane. Then we apply these results to find an explicit
expression of the secondary Pohlke’s projection introduced in [6].
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1 Introduction

Let OP1, OP2, OP3 be three non-parallel segments in a plane ω and let EP1,P2 , EP2,P3 and EP3,P1

be the concentric ellipses defined by the three pairs of conjugate semi-diameters (OP1, OP2),
(OP2, OP3) and (OP3, OP1) respectively. It was proved in [8] and then in [6] that there are at
most two distinct ellipses with center O circumscribing EP1,P2 , EP2,P3 , EP3,P1 .

The first, which we denote by EP, is the Pohlke’s ellipse (see also [2], [3]). It is determined
by the requirement that there exists a sphere S with center O, three points Q1, Q2, Q3 ∈ S and
a parallel projection Π : E3 → ω (i.e., a Pohlke’s projection) such that:

Π(OQi) = OPi (1 ≤ i ≤ 3), (1.1)

OQ1 ⊥ OQ2, OQ2 ⊥ OQ3, OQ3 ⊥ OQ1. (1.2)

With S, Π as above, the Pohlke’s ellipse EP for OP1, OP2, OP3 is the contour of the projection
onto ω of the sphere S, i.e.

EP
def
= Π(S ∩ π), (1.3)

where π the plane through O and perpendicular to the direction of Π. Existence and uniqueness
of such an ellipse are guaranteed by Pohlke’s theorem of oblique axonometry [7]. See [1], [4] for
an analytic proof. The other, which we denote by ES, is the secondary Pohlke’s ellipse:

Definition 1.1 A secondary Pohlke’s ellipse for OP1, OP2, OP3 is an ellipse ES 6= EP, centered
at O, which circumscribes the three ellipses EP1,P2, EP2,P3, EP3,P1.

By the results of [6] (Theorem2.1, (a) ⇔ (b)) a secondary Pohlke’s ellipse ES is determined by
the requirement that there exists a sphere S̃ with center O, three points R1, R2, R3 ∈ S̃ and a
parallel projection Π̃ : E3 → ω (i.e., a secondary Pohlke’s projection) such that:

Π̃(ORi) = OPi (1 ≤ i ≤ 3), (1.4)

OR1 ⊥ OR2 , OR2 ⊥ OR3 and OR3 ⊥ OR′
1 , (1.5)

Ri 6∈ π̃ (i.e., Ri 6= R′
i) (1 ≤ i ≤ 3) (1.6)
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where π̃ is the plane through O and perpendicular to the direction of Π̃ ; the point R′
i is

symmetric to Ri with respect to π̃. With S̃, Π̃ and π̃ as above, we define

ES = Π̃(S̃ ∩ π̃). (1.7)

See also [8] for an alternative approach.
Unlike the Pohlke’s ellipse EP, which exists even if two of the segments are parallel (see

Section 2), the secondary Pohlke’s ellipse ES does not always exist. More precisely, from [6]
(Theorem2.1, equivalence (a), (b) ⇔ (c)) we also know that:

Theorem1.2 Suppose the segments OP1, OP2, OP3 are non-parallel. Then there exists a sec-
ondary Pohlke’s ellipse ES if and only if

a
−−→
OP1 + b

−−→
OP2 + c

−−→
OP3 = 0, (1.8)

with a, b, c 6= 0 such that

G(a, b, c)
def
= a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2 > 0. (1.9)

Further, if ES exists then ES is unique.

The preceding definitions of EP and ES are not invariant under affine transformations of the
euclidean space E3 due to the requirement that S, S̃ be spheres and also for the orthogonality
conditions in (1.2) and (1.5), (1.6). However, we show here that under affine transformation
of the plane ω the Pohlke’s ellipse of the segments OP1, OP2, OP3 transforms into the Pohlke’s
ellipse of the transformed segments and the same is true for the secondary Pohlke’s ellipse when
it exists, i.e., if (1.8)-(1.9) holds.

Notation 1.3 For greater clarity we will often write

EP(O,P1, P2, P3) (1.10)

instead of EP, and also ES(O,P1, P2, P3) instead of ES, to make explicit the triad of segments
from which a given Pohlke’s ellipse or a given secondary Pohlke’s ellipse refers.

In this article we will demonstrate a number of facts about Pohlke’s ellipses and secondary
Pohlke’s ellipses which we can summarize as follows:

(i) In Section 3, assuming the segments OP1, OP2, OP3 are not all parallel, we explicitly
determine a pair of conjugate semi-diameters of the Pohlke’s ellipse EP and then we apply
this result to prove that if Ψ : ω → ω is any affine transformation then

Ψ(EP(O,P1, P2, P3)) = EP(Ψ(O),Ψ(P1),Ψ(P2),Ψ(P3)). (1.11)

(ii) In Section 4, assuming OP1, OP2, OP3 are non-parallel and (1.8)-(1.9) holds, we demon-
strate similar results for the secondary Pohlke’s ellipse ES. In particular, noting that
ES(Ψ(O),Ψ(P1),Ψ(P2),Ψ(P3)) exists because condition (1.8)-(1.9) is invariant under affine
transformations of the plane ω, we prove that

Ψ(ES(O,P1, P2, P3)) = ES(Ψ(O),Ψ(P1),Ψ(P2),Ψ(P3)). (1.12)

Using (1.11) and (1.12) we also show that

area(EP) < area(ES), (1.13)

because it holds if two of the segments OP1, OP2, OP3 are perpendicular and equal.
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(iii) In Section5, assuming OP1, OP2, OP3 are non-parallel and (1.8)-(1.9) holds, we show that

ES(O,P1, P2, P3) = EP(O,P1, P2, X3), (1.14)

where the point X3 is such that

±
−−→
OX3 =

a(a2 − b2 − c2)

c
√
G

−−→
OP1 +

b(a2 − b2 + c2)

c
√
G

−−→
OP2 , (1.15)

with G = G(a, b, c) the quantity defined by (1.9).
Similarly we can prove that ES(O,P1, P2, P3) = EP(O,X1, P2, P3) = EP(O,P1, X2, P3) by
appropriately defining X1, X2 respectively.

In Section 5.1, applying the identity (1.14) and the formulae of [4] for Pohlke’s projection,
we finally give a procedure to explicitly determine the secondary Pohlke’s projection Π̃
and the points R1, R2, R3 such that conditions (1.4), (1.5), (1.6) hold.

2 Preliminaries

In this section we suppose OP1, OP2, OP3 are not all parallel. 1 To determine the Pohlke’s
ellipse EP we resume some of the arguments introduced in [4, 6]. Namely, we adopt a system of
coordinate axes x, y, z such that ω is the plane z = 0,

O =

 0
0
0

, P1 =

 x1
y1
0

, P2 =

 x2
y2
0

, P3 =

 x3
y3
0

 (2.1)

and we also consider the matrix

A =

 x1 x2 x3
y1 y2 y3
0 0 0

 =

 A1

A2

0

. (2.2)

The rows A1, A2 are linearly independent (i.e., car(A) = 2) because OP1, OP2, OP3 are not all
parallel. Hence can we define:

γ
def
= arccos

(
A1 ·A2

‖A1‖ ‖A2‖

)
, λ

def
=

‖A1‖
‖A2‖

. (2.3)

Noting that 0 < γ < π and λ > 0, we can also introduce the quantities:

η
def
=

λ2 + 1 +
√
(λ2 + 1)2 − 4λ2 sin2γ

2λ2 sin2γ
(2.4)

1 If two of the segments OP1, OP2, OP3 are parallel (in particular if one of them vanishes) we can still say
that EP circumscribes EP1,P2 , EP2,P3 and EP3,P1 but we need to introduce degenerate ellipses as in [1, pp. 372-373].
For instance, if OP1 ∥ OP2 then we set EP1,P2 = MN , where MN is the segment parallel to OP1, OP2 such that
O = (M + N)/2 and |ON |2 = |OP1|2 + |OP2|2. In this case we say that EP circumscribes EP1,P2 if M,N ∈ EP.
We also say that EP1,P2 is tangent to EP at M,N . See the Definitions 3.1, 3.3 of [6].
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and then 2

(α, β)
def
= ±

(√
η λ2 − 1 , sgn(cos γ)

√
η − 1

)
, (2.5)

where

sgn(t)
def
=

{
1 if t ≥ 0

−1 if t < 0
. (2.6)

Finally, we define the parallel projection Π : E3 → ω as

Π

 x
y
z

 def
=

 x+ αz
y + βz

0

. (2.7)

The Pohlke’s ellipse EP of OP1, OP2, OP3 is then the contour of the projection into the plane ω
of the sphere S with center O and radius

ρ
def
=

‖A1‖
λ
√
η

=
‖A2‖√

η
. (2.8)

Namely, EP = Π(S ∩ π) where π is the plane π : αx+ βy − z = 0. See [4, Sections 3 and 4].

Remark 2.1 It is worthwhile noting that EP uniquely determines the sphere S centered at O,
because the radius of S must be equal to the semi-minor axis of EP. Furthermore, the Pohlke’s
projection Π is determined up to symmetry with respect to the plane ω. Namely, if the semi-axes
of EP are given by two perpendicular segments OV,OW ⊂ ω such that

0 < |OV | ≤ |OW | and W =

 p
q
0

, (2.9)

then S has radius ρ = |OV | and the direction of projection is given by the column vector

−→n =

 δp
δq
±1

 with δ =

√
p2 + q2 − ρ2

ρ2(p2 + q2)
. (2.10)

If δ = 0 then EP is a circle and we have only the orthogonal projection. Conversely, if δ > 0 the
two possible signs of the last component of −→n correspond to two distinct projections which are
symmetric with respect to the plane ω. Indeed, if Π : E3 → ω is defined by

Π(P ) = Π(P ) where P is symmetric to P with respect to ω, (2.11)

then the conditions (1.1) and (1.2) are verified with Π instead of Π and Q1, Q2, Q3 instead of
Q1, Q2, Q3 respectively. Given two projections Π1,Π2 : E3 → ω , we will later write that

Π1 ∼ Π2 ⇔ Π1 = Π2 or Π1 = Π2 . (2.12)

The same considerations apply to the secondary Pohlke’s ellipse ES (and to the corresponding
sphere S̃ and projection Π̃) when condition (1.8)-(1.9) holds. 2

2 We note that η, λ2η ≥ 1. Indeed from (2.4) we easily have:

η(λ, γ) ≥ η(γ,
π

2
) =

λ2 + 1 + |λ2 − 1|
2λ2

=

{
1/λ2 if 0 < λ ≤ 1

1 if λ ≥ 1
.
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Remark 2.2 Looking at (2.7), it is worth noting that the Pohlke’s projection Π depends only
on the quantities γ, λ which we have defined in (2.3). Taking into account (2.8), it is also
immediate that: EP remains unchanged if ‖A1‖, ‖A2‖ and A1 ·A2 do not vary.

Using (2.10) and the expressions (3.1) of the lengths of the semi-axes of EP, it is possible to
prove that the converse of this last statement is also true.

3 The Pohlke’s ellipse EP
As in the previous section, we suppose that OP1, OP2, OP3 are not all parallel and we use a
system of coordinate axes x, y, z such that ω is the plane z = 0 and (2.1) holds.

Lemma3.1 The lengths σ− , σ+ of the semi-axes of the Pohlke’s ellipse EP are given by

(σ±)
2 =

‖A1‖2 + ‖A2‖2 ±
√(

‖A1‖2 + ‖A2‖2
)2 − 4‖A1 ∧A2‖2

2
. (3.1)

Proof. Since EP = Π(S ∩ π), it is clear that σ− = ρ where ρ is the radius of S given by (2.8).
Furthermore, from (2.7) we can easily see that σ+ = ρ

√
1 + α2 + β2 because the direction of

projection is given by the column vector

−→u =

 −α
−β
1

. (3.2)

Taking account (2.4) and (2.8), we have

σ2
− =

‖A2‖2

η
= ‖A2‖2

λ2 + 1−
√

(λ2 + 1)2 − 4λ2 sin2γ

2
. (3.3)

While, by (2.4), (2.5) and (2.8) we obtain

σ2
+ = ρ2(1 + α2 + β2)

=
‖A2‖2

η

(
ηλ2 + η − 1

)
= ‖A2‖2

(
λ2 + 1− η−1

)
= ‖A2‖2

λ2 + 1 +
√

(λ2 + 1)2 − 4λ2 sin2γ

2
.

(3.4)

Using the definitions (2.3) of γ and λ and noting that

‖A1‖ ‖A2‖ sin γ = ‖A1 ∧A2‖, (3.5)

we obtain (3.1). 2

Remark 3.2 σ− , σ+ are also the lengths of the semi-axes of the ellipse E defined by the pair
of conjugate semi-diameters (OA1, OA2).

3 In fact, by Apollonius’s theorems on conjugate di-
ameters, the lengths a, b of these semi-axes satisfy the system

a2 + b2 = ‖A1‖2 + ‖A2‖2, ab = ‖A1 ∧A2‖. (3.6)

3 Here, with a slight abuse of notation, we use A1, A2 to indicate two points with the same coordinates of the
rows A1, A2 of the matrix A defined in (2.2).
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Thus we immediately find

a2, b2 =
‖A1‖2 + ‖A2‖2 ±

√(
‖A1‖2 + ‖A2‖2

)2 − 4‖A1 ∧A2‖2

2
, (3.7)

i.e., formula (3.1). 2

Remark 3.3 Noting (2.2), from (3.1) we get

σ2
− + σ2

+ = ‖A1‖2 + ‖A2‖2 = |OP1|2 + |OP2|2 + |OP3|2. (3.8)

See also [2, Main Theorem 3.1] for an alternative proof of (3.8). 2

Lemma3.4 If one of the segments OP1, OP2, OP3 vanishes then EP is the ellipse determined
by the pair of conjugate semi-diameters given by the other two segments.

Proof. Suppose OP3 vanishes. Then we must prove that EP = EP1,P2 . Namely, EP is determined
by the pair of conjugate semi-diameters (OP1, OP2). We can argue in various ways:

(i) Since P3 = O, in (1.1) the direction of the projection Π is given by the segments OQ3. By
the orthogonality conditions (1.2) this means that Q1, Q2 ∈ π. Hence, it follows that

EP1,P2 = Π(S ∩ π) = EP. (3.9)

(ii) Since EP and EP1,P2 are concentric and tangent at some point P , there exists P ′, P ′′ 6= O,
with OP ′ ‖ OP ′′ and OP ′ ⊃ OP ′′, such that EP and EP1,P2 are determined by the pairs of
conjugate semi-diameters (OP,OP ′) and (OP,OP ′′) respectively. By Apollonius’s theorem
on conjugate semi-diameters and Remark 3.3 we have

|OP |2 + |OP ′|2 = |OP1|2 + |OP2|2 = |OP |2 + |OP ′′|2. (3.10)

This gives |OP ′| = |OP ′′| and we deduce that EP = EP1,P2 because they are determined by
the same pair of conjugate semi-diameters.

(iii) Lemma 3.4 is immediate if we also consider the degenerate ellipses. 1 Indeed, if OP3 = O
then EP1,P3 = EP1,O = P1P

′
1 and EP2,P3 = EP2,O = P2P

′
2 , where P ′

1, P
′
2 are symmetric to

P1, P2 respectively, with respect to the point O. It follows that P1, P2 ∈ Ep , thus EP and
EP1,P2 are tangent at P1 and P2. Hence EP = EP1,P2 . See [6, Section 3].

Having proved Lemma3.4, we now suppose that the segments OP1, OP2, OP3 do not vanish.
We begin with a special case:

Lemma3.5 Let us suppose that

U1 =

 1
0
0

, U2 =

 0
1
0

, U3 =

 h
k
0

, (3.11)

with h, k not both zero, i.e., we assume U3 6= O. Then the semi-axes of the Pohlke’s ellipse
EP(O,U1, U2, U3) are represented by the segments OΣ− and OΣ+ with

Σ− =
±1√

h2 + k2

 k
−h
0

, Σ+ = ±
√

1 + h2 + k2

h2 + k2

 h
k
0

. (3.12)
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Proof. According to (2.1), (2.2) we set

A =

 1 0 h
0 1 k
0 0 0

 (3.13)

and then we follow the scheme from (2.3) to (2.8). We have

cos γ =
hk√

1 + h2
√
1 + k2

, λ =

√
1 + h2√
1 + k2

. (3.14)

From this we get η = 1 + k2 , ρ = ‖A2‖ η−1/2 = 1 and

(α, β) = ±
(
|h|, sgn(hk)|k|

)
= ±(h, k). (3.15)

It follows that the lengths of the semi-axes are

σ− = 1 and σ+ =
√
1 + h2 + k2 . (3.16)

Moreover, the direction of projection onto the image plane ω is given by the nonzero vector

−→v =

 −h
−k
1

 or

 h
k
1

. This means that

OΣ− ‖

 h
−k
0

, OΣ+ ‖

 h
k
0


and then we can easily derive the expressions (3.12) for Σ− and Σ+ . 2

Remark 3.6 It is easy to find the Pohlke’s projection corresponding to U1, U2, U3 directly. In-
deed, in view of (3.11), EU1,U2 is a circle with center O and radius ρ = 1. Hence, EP(O,U1, U2, U3)
must have semi-minor axis σ− = 1. This means that the sphere S has radius ρ = 1 and that
the conditions (1.1), (1.2) are satisfied (with Pi = Ui , 1 ≤ i ≤ 3) taking Q1 = U1, Q2 = U2,

Q3 = ±

 0
0
1

 (3.17)

and the direction of the projection Π parallel to the segment Q3U3, i.e., the vector −→v above.
See [6, Section 4] for more details. 2

We are now in position to obtain the expressions of the conjugate semi-diameters of EP in
the general case:

Lemma3.7 Suppose OP1 ∦ OP2 and

−−→
OP3 = h

−−→
OP1 + k

−−→
OP2 , (3.18)

with h, k not both zero (i.e., OP3 6= O). Then the segments OV,OW with

−−→
OV = ±k

−−→
OP1 − h

−−→
OP2√

h2 + k2
and

−−→
OW = ±

√
1 + h2 + k2

h2 + k2

(
h
−−→
OP1 + k

−−→
OP2

)
, (3.19)

are conjugate semi-diameters of the Pohlke’s ellipse EP.
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Proof. Noting that OV ∦ OW , it is enough to show that EP(O,P1, P2, P3) coincides with the
Pohlke’s ellipse EP(O, V,W,O), where the third segment vanishes. Indeed, by Lemma3.4, OV
and OW are conjugate semi-diameters of EP(O, V,W,O).

To prove this fact, we consider the matrix A given by the coordinates of the points V,W
and O. Namely, we set

A =



1√
h2+k2

(kx1 − hx2)
√

1+h2+k2

h2+k2
(hx1 + kx2) 0

1√
h2+k2

(ky1 − hy2)
√

1+h2+k2

h2+k2
(hy1 + ky2) 0

0 0 0

 =

 A1

A2

0

 (3.20)

where, for simplicity, in (3.19) we always choose the sign ” + ”. Taking account (3.18), that is

x3 = hx1 + kx2 and y3 = hy1 + ky2, (3.21)

we then evaluate ‖A1‖, ‖A2‖ and A1 ·A2 . We have:

‖A1‖2 =
(kx1 − hx2)

2

h2 + k2
+

1 + h2 + k2

h2 + k2
(hx1 + kx2)

2

=
(hx1 + kx2)

2 + (kx1 − hx2)
2

h2 + k2
+ (hx1 + kx2)

2

= x21 + x22 + x23 = ‖A1‖2,

(3.22)

and in the same way we can show that ‖A2‖2 = ‖A2‖2.
Further, we consider the scalar product A1 · A2 . We have:

A1 ·A2 =
(kx1 − hx2)(ky1 − hy2)

h2 + k2
+

1 + h2 + k2

h2 + k2
(hx1 + kx2)(hy1 + ky2)

=
(hx1 + kx2)(hy1 + ky2) + (kx1 − hx2)(ky1 − hy2)

h2 + k2

+ (hx1 + kx2)(hy1 + ky2)

= x1y1 + x2y2 + x3y3 = A1 ·A2 .

(3.23)

In conclusion, we find that

‖A1‖ = ‖A1‖, ‖A2‖ = ‖A2‖ and A1 ·A2 = A1 ·A2 . (3.24)

By Remark 2.2, this means that EP(O, V,W,O) = EP(OP1, P2, P3). 2

Summing up from Lemmas 3.4, 3.5 and 3.7, we get:

Theorem3.8 Let us suppose that OP1 ∦ OP2. If OP3 = O then the segments OP1, OP2 are
conjugate semi-diameters of the Pohlke’s ellipse EP. Conversely, if OP3 6= O then a pair of
conjugate semi-diameters is given by the segments OV,OW with

−−→
OV = ± k

−−→
OP1 − h

−−→
OP2√

h2 + k2
and

−−→
OW = ±

√
1 + h2 + k2

h2 + k2
−−→
OP3 , (3.25)

where the coefficients h, k are such that

−−→
OP3 = h

−−→
OP1 + k

−−→
OP2 . (3.26)
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With U1, U2, U3 as in (3.11) we also have:

Lemma3.9 Let Φ : ω → ω be the an affine transformation and let us suppose that

OP1 = Φ(OU1), OP2 = Φ(OU2), OP3 = Φ(OU3). (3.27)

Then Φ(EP(O,U1, U2, U3)) = EP(O,P1, P2, P3).

Proof. From (3.27) it is clear that OU1 ∦ OU2 ⇒ OP1 ∦ OP2 and that

−−→
OU3 = h

−−→
OU1 + k

−−→
OU2 ⇒

−−→
OP3 = h

−−→
OP1 + k

−−→
OP2 . (3.28)

If U3 = O then P3 = O and by the first part of Theorem3.8, we know that

EP(O,U1, U2, O) and EP(O,P1, P2, O)

are determined by the pairs of conjugate semi-diameters (OU1, OU2) and (OP1, OP2) respec-
tively. Since OP1 = Φ(OU1) and OP2 = Φ(OU2) it follows that

Φ(EP(O,U1, U2, O)) = EP(O,P1, P2, O). (3.29)

Conversely, by the second part of Theorem3.8, if U3 6= O then the ellipses EP(O,U1, U2, U3) and
EP(O,P1, P2, P3) are determined by the pairs of conjugate semi-diameters (OΣ−, OΣ+) (given
by (3.12)) and (OV,OW ) respectively. Since

Φ(
−−−→
OΣ−) = ±

−−→
OV and Φ(

−−−→
OΣ+) = ±

−−→
OW, (3.30)

we come to the same conclusion. 2

More generally, applying Lemma3.9, we can easily prove the following:

Theorem3.10 Let Ψ : ω → ω be any affine transformation. Suppose the segments OP1, OP2,
OP3 are not all parallel and let EP be the corresponding Pohlke’s ellipse. Then Ψ(EP) is the
Pohlke’s ellipse corresponding to the triad of segments Ψ(OP1), Ψ(OP2), Ψ(OP3).

Remark 3.11 Suppose the segments OP1,OP2,OP3 are not all parallel and do not vanish. Let
Tij (i 6= j) be a point of contact of EP(O,P1, P2, P3) with EPi,Pj and let tij be the common
tangent line at Tij . Applying Theorem3.10 we can easily show that

tij ‖ OPk (k 6= i, j). (3.31)

Indeed, taking into account Lemma3.5, if OPi ∦ OPj it is sufficient to observe that the statement
is true for the ellipses EP(O,U1, U2, U3) and EU1,U2 .
Conversely, if OPi ‖ OPj , taking h 6= 0 and k = 0 in (3.11), we note that the conclusion is true
for EP(O,U1, U2, U3) and the degenerate ellipses EU1,U3 , where OU1 ‖OU3, U3 6= O . 1 This result
was first derived in [3, Theorem2] through synthetic methods. 2
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4 The secondary Pohlke’s ellipse ES
In this section we suppose that OP1, OP2, OP3 are non-parallel (i.e., OPi ∦ OPj if i 6= j) and

−−→
OP3 = h

−−→
OP1 + k

−−→
OP2 (4.1)

with h, k 6= 0 such that

g(h, k)
def
= h4 + k4 − 2h2k2 − 2h2 − 2k2 + 1 > 0. (4.2)

By Theorem1.2 there exists a unique secondary Pohlke’s ellipse ES(O,P1, P2, P3).
4

As in the previous section we use a system of coordinate axes x, y, z such that ω is the plane
z = 0 and (2.1) holds. Also we first consider the triad of segments OU1, OU2, OU3 where

U1 =

 1
0
0

, U2 =

 0
1
0

 and U3 =

 h
k
0

 with h, k 6= 0 (4.3)

as above. Then, since OU1, OU2, OU3 are non-parallel and

−−→
OU3 = h

−−→
OU1 + k

−−→
OU2, (4.4)

the secondary Pohlke’s ellipse ES(O,U1, U2, U3) exists and it is unique. More precisely, from [6,
Section 4], we know that the conditions (1.4), (1.5) and (1.6) (with Pi = Ui , for 1 ≤ i ≤ 3) are
verified by taking: S̃ the sphere with center O and radius ρ = 1, the points

R1 = U1, R2 = U2 and R3 =
1

h2 − k2 + 1

 2h
0

±
√

g(h, k)

, (4.5)

where g(h, k) is the function defined in (4.2). 5 See formula (90) of [6]. This means that the

direction of the projection Π̃ is given by the vector
−−−→
R3U3. From these facts it follows that:

Lemma4.1 Suppose (4.2), (4.3) hold. Then the semi-axes of the secondary Pohlke’s ellipse
ES(O,U1, U2, U3) are represented by the segments OΣ̃− and OΣ̃+ with

Σ̃− =
±1√

H2 +K2

 K
−H
0

, Σ̃+ = ±

√
g +H2 +K2

g(H2 +K2)

 H
K
0

 (4.6)

where g = g(h, k) and

H
def
= h(h2 − k2 − 1), K

def
= k(h2 − k2 + 1). (4.7)

4 Condition (4.1)-(4.2) is clearly equivalent to (1.8)-(1.9). But (4.1)-(4.2) allows us to obtain slight simpler
expressions.

5 Note that condition (4.2) ⇒ h2 − k2 ̸= ±1. In fact, since g(h, k) = (h2 − k2)2 − 2h2 − 2k2 + 1, we get

h2 − k2 = ±1 ⇒ g(h, k) = 2(1− h2 − k2) =

{
− 4h2 if h2 − k2 = −1

− 4k2 if h2 − k2 = 1
.
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Proof. From (4.5) we have

−−−→
R3U3 =

1

h2 − k2 + 1

 h(h2 − k2 − 1)
k(h2 − k2 + 1)

∓
√
g(h, k)

. (4.8)

Thus multiplying the right hand side of (4.8) by the factor h2−k2−1√
g(h,k)

we see that the direction

of projection is given by the vector

−→w =

 −H/
√
g

−K/
√
g

1

 or

 H/
√
g

K/
√
g

1

, (4.9)

where the terms H,K are defined as in (4.7). Furthermore H,K 6= 0 if h, k 6= 0 and condition
(4.2) holds. 5 Then, taking into account that the sphere S̃ has center O and radius ρ = 1 we
easily get the expressions (4.6). 2

Corollary 4.2 Suppose (4.2), (4.3) hold. Then

area
(
EP(O,U1, U2, U3)

)
< area

(
ES(O,U1, U2, U3)

)
. (4.10)

Proof. From the expressions (3.12) and (4.6) we have |OΣ−| = |OΣ̃−| = 1. Thus it is enough
to prove the inequality |OΣ+|2 < |OΣ̃+|2, that is

1 + h2 + k2 <
g +H2 +K2

g
. (4.11)

l Since we know that g > 0, (4.11) is equivalent to (h2 + k2) g < H2 + K2. Introducing the
expressions (4.2) and (4.7), with elementary calculations the last inequality reduces to

0 < h2k2, (4.12)

which is clearly verified because we are assuming h, k 6= 0. 2

We can now give the expressions of a pair of conjugate semi-diameters of the secondary
Pohlke’s ellipse ES(O,P1, P2, P3) . Indeed, with U1, U2, U3 as in (4.3), we have:

Lemma4.3 Suppose the segments OP1, OP2, OP3 are non-parallel and condition (4.1)-(4.2)
(or (1.8)-(1.9)) holds. Let Φ : ω → ω be the affine transformation such that OP1 = Φ(OU1),
OP2 = Φ(OU2). Then

Φ(ES(O,U1, U2, U3)) = ES(O,P1, P2, P3). (4.13)

In particular the segments OṼ and OW̃, with

−−→
OṼ = ±K

−−→
OP1 −H

−−→
OP2√

H2 +K2
and

−−→
OW̃ = ±

√
g +H2 +K2

g(H2 +K2)

(
H

−−→
OP1 +K

−−→
OP2

)
, (4.14)

are conjugate semi-diameters of the secondary Pohlke’s ellipse ES(O,P1, P2, P3).
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Proof. In view of Pohlke’s theorem and Theorem1.2, there are exactly two distinct ellipses with
center O and circumscribing EP1,P2 , EP2,P3 , EP3,P1 . Namely, the Pohlke’s ellipse EP(O,P1, P2, P3)
and the secondary Pohlke’s ellipse ES(O,P1, P2, P3).

Noting that Φ(OU3) = OP3, we have

Φ(EU1,U2) = EP1,P2 , Φ(EU2,U3) = EP2,P3 , Φ(EU3,U1) = EP3,P1 . (4.15)

Since ES(O,U1, U2, U3) circumscribes EU1,U2 , EU2,U3 and EU3,U1 , we deduce that

Φ(ES(O,U1, U2, U3)) circumscribes EP1,P2 , EP2,P3 , EP3,P1 . (4.16)

By Lemma3.9 we already know that Φ(EP(O,U1, U2, U3)) = EP(O,P1, P2, P3). Thus we must
conclude that

Φ(ES(O,U1, U2, U3)) = ES(O,P1, P2, P3) , (4.17)

because ES(O,U1, U2, U3) 6= EP(O,U1, U2, U3). Finally, taking account Lemma4.1, we see that
the segments Φ(OΣ̃−) and Φ(OΣ̃+) are conjugate semi-diameters of Φ(ES(O,U1, U2, U3)), hence

the segments OṼ ,OW̃ given by the expressions (4.14) are conjugate semi-diameters of the
secondary Pohlke’s ellipse ES(O,P1, P2, P3). 2

From Corollary 4.2 and Lemma4.3 it is now clear that:

Corollary 4.4 Suppose the segments OP1, OP2, OP3 are non-parallel and condition (4.1)-(4.2)
(i.e., (1.8)-(1.9)) holds. Then

area
(
EP(O,P1, P2, P3)

)
< area

(
ES(O,P1, P2, P3)

)
. (4.18)

More generally, if Ψ : ω → ω is any affine transformation of the plane ω, applying the previous
results we can easily prove the following:

Theorem4.5 Suppose the segments OP1,OP2,OP3 are non-parallel and condition (1.8)-(1.9)
holds. Let ES be the secondary Pohlke’s ellipse of the triad OP1,OP2,OP3. Then Ψ(ES) is the
secondary Pohlke’s ellipse of the triad of segments Ψ(OP1), Ψ(OP2), Ψ(OP3).

5 A determination of the secondary Pohlke’s projection

Let Π̃ : E3 → ω be a secondary Pohlke’s projection for OP1,OP2,OP3, i.e., a parallel projection
satisfying the conditions (1.4), (1.5), (1.6). In this final section we give explicit formulae for
determining Π̃ and the points R1, R2, R3 . To begin with, we note the following:

Claim5.1 Let Π̃ : E3 → ω be a secondary Pohlke’s projection for OP1,OP2,OP3 and suppose
the nonzero vector −→w represents the direction of this projection. Then the following hold:

(a) ORi , OR′
i 6⊥ −→w (1 ≤ i ≤ 3).

(b) If the vector −→w is known, then the points R1, R2, R3, R
′
1, R

′
2, R

′
3 can be recursively computed

from any of them. For example, if R3 is given then we immediately have:

−−→
OR2 =

−−→
OP2 −

−−→
OR3 ·

−−→
OP2

−−→
OR3 · −→w

−→w ,
−−−→
OR′

1 =
−−→
OP1 −

−−→
OR3 ·

−−→
OP1

−−→
OR3 · −→w

−→w . (5.1)



r. manfrin 13

Proof. (a) It follows from condition (1.6). Indeed, if ORi ⊥ −→w , or if OR′
i ⊥

−→w , then Ri =
R′

i ∈ π̃ where π̃ is the plane through O and perpendicular to −→w . Thus (1.6) fails.

(b) By condition (1.4) we have Π̃(R2) = P2, thus
−−→
OR2 =

−−→
OP2 + t−→w for some t ∈ R . By (1.5)

we also know that OR2 ⊥ OR3. So, taking account that
−−→
OR3 · −→w 6= 0, we obtain

t = −
−−→
OR3 ·

−−→
OP2

−−→
OR3 · −→w

. (5.2)

This gives the first equality of (5.1). Noting that Π̃(R′
1) = P1 and OR3 ⊥ OR′

1, in the same
way we can derive the second equality . To conclude it is enough to consider also the points R′

2

andR′
3, because from condition (1.5) we get a cyclic relation of orthogonality:

OR1 ⊥ OR2, OR2 ⊥ OR3, OR3 ⊥ OR′
1,

OR′
1 ⊥ OR′

2, OR′
2 ⊥ OR′

3 , OR′
3 ⊥ OR1.

(5.3)

So we can start from any point of the set {R1, R2, R3, R
′
1, R

′
2, R

′
3}. 2

Next, suppose that the segments OP1, OP2, OP3 are non-parallel and that the condition
(4.1)-(4.2) (i.e., (1.8)-(1.9)) is true. By Theorem2.1 of [6] there exist a sphere S̃ with center O,
three point R1, R2, R3 ∈ S̃ and a parallel projection Π̃ : E3 → ω such that the conditions (1.4),
(1.5), (1.6) hold. To determine R1, R2, R3 and Π̃, we begin by observing that setting

−−→
OX3 =

H
√
g

−−→
OP1 +

K
√
g

−−→
OP2 , (5.4)

we have
ES(O,P1, P2, P3) = EP(O,P1, P2, X3 ). (5.5)

Indeed, by Lemma3.7 the segments OV̂ and OŴ , with

−−→
OV̂ = ±

K√
g

−−→
OP1 − H√

g

−−→
OP2√

H2

g + K2

g

and (5.6)

−−−→
OŴ = ±

√√√√1 + H2

g + K2

g

H2

g + K2

g

(
H
√
g

−−→
OP1 +

K
√
g

−−→
OP2

)
, (5.7)

are conjugate semi-diameters of the Pohlke’s ellipse EP(O,P1, P2, X3). Noting the expressions

(4.14) of Lemma4.3, it is clear OV̂ , OŴ coincide with the conjugate semi-diameters OṼ ,OW̃
respectively of the secondary Pohlke’s ellipse ES(O,P1, P2, P3). Thus (5.5) holds.
Thanks to the considerations made in Remark 2.1, this implies that the secondary Pohlke’s
projection corresponding to the triad of segments OP1, OP2, OP3 and the Pohlke’s projection of
the triad OP1, OP2, OX3 are equal or they are symmetric with respect to ω.

More precisely, taking account the conditions (1.1) and (1.2), let us denote with Ŝ the sphere
centered at O, with Q̂1, Q̂2, Q̂3 the three points of Ŝ and with Π̂ : E3 → ω the parallel projection
such that:

Π̂(OQ̂1) = OP1, Π̂(OQ̂2) = OP2 and Π̂(OQ̂3) = OX3, (5.8)

OQ̂1 ⊥ OQ̂2, OQ̂2 ⊥ OQ̂3, OQ̂3 ⊥ OQ̂1. (5.9)
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Then, by Remark 2.1, it follows that

S̃ = Ŝ and Π̃ ∼ Π̂. (5.10)

For our purposes Π̃ and the symmetric projection Π̃ are equivalent, thus we can take

Π̃ = Π̂. (5.11)

Then, to fulfill the conditions (1.4), (1.5) and (1.6), we only need to select appropriately the
points Ri ∈ Ŝ (1 ≤ i ≤ 3). More precisely,

Ri = Q̂i or Ri = Q̂i
′ (1 ≤ i ≤ 2) 6 (5.12)

and then R3 ∈ Ŝ such that

Π̂(R3) = P3. (5.13)

Thanks to the symmetry with respect to the plane π̂, it is indifferent to start with R1 = Q̂1 or
R1 = Q̂1

′. If we start with R1 = Q̂1 then we must take

R2 = Q̂2 , (5.14)

because OQ̂1 6⊥ OQ̂2
′. 7 After selecting R2, point R3 can be obtained by applying Claim 5.1.

Namely, we must have

−−→
OR3

def
=

−−→
OP3 −

−−→
OR2 ·

−−→
OP3

−−→
OR2 · −→w

−→w , (5.15)

where −→w is any nonzero vector representing the direction of the secondary Pohlke’s projection
Π̃, i.e., the direction of the projection Π̂.

5.1 Reference tetrahedron and direction of projection

Summarizing up we give now a procedure for determining the points R1, R2, R3 and the direction
of the secondary Pohlke’s projection. As for Pohlke’s projection, we use a system of coordinate
axes x, y, z such that ω is the plane z = 0 and (2.1) holds. We suppose that OP1,OP2,OP3 are
non-parallel and condition (4.1)-(4.2) holds. Then we consider the matrix

Â =

 x1 x2 x̂3
y1 y2 ŷ3
0 0 0

 =

 Â1

Â2

0

, (5.16)

where

x̂3 =
H
√
g
x1 +

K
√
g
x2 , ŷ3 =

H
√
g
y1 +

K
√
g
y2 (5.17)

and H = h(h2 − k2 − 1), K = k(h2 − k2 + 1) are the terms introduced in (4.7).

6 Because Π̂(Q̂i) = Π̂(Q̂i
′) = Pi, for 1 ≤ i ≤ 2. According to the previous notation, Q̂i

′ is symmetric to Q̂i

with respect to the plane π̂ through O and perpendicular to the direction of the projection Π̂.
7 Indeed, OQ̂1 ⊥ OQ̂2 ∧ OQ̂1 ⊥ OQ̂2

′ ⇒ Q̂1 ∈ π̂ ∨ Q̂2 ∈ π̂. But this cannot happen because, by (5.10), we

already know that Π̂ = Π̃ is as secondary Pohlke’s projection for OP1,OP2,OP3.
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Having defined the matrix Â, we continue by following the formulae (3.6), (3.10), (3.21),
(3.22) of [4]. We define the quantities:

γ̂ = arccos

(
Â1 · Â2

‖Â1‖ ‖Â2‖

)
, λ̂ =

‖Â1‖
‖Â2‖

, (5.18)

η̂ =
λ̂2 + 1 +

√
(λ̂2 + 1)2 − 4λ̂2 sin2γ̂

2 λ̂ 2 sin2γ̂
, (5.19)

ν̂ = ± ρ̂ with ρ̂ =
‖Â1‖
λ̂
√
η̂

=
‖Â2‖√

η̂
, (5.20)

and, finally, (
α̂, β̂

)
= ±

(√
η̂ λ̂2 − 1 , sgn(cos γ̂)

√
η̂ − 1

)
, (5.21)

where t 7→ sgn(t) is the “signum” function introduced in (2.6).
Then, by the results of [4, Section 4], the coordinates of the points Q̂1, Q̂2, Q̂3 satisfying (5.8),
(5.9) are the columns B̂1, B̂2, B̂3 respectively of the matrix

B̂ =
1

1 + α̂ 2 + β̂ 2

 1 + β̂ 2 −α̂ β̂ −α̂

−α̂ β̂ 1 + α̂ 2 −β̂

α̂ β̂ 1




x1 x2 x̂3

y1 y2 ŷ3
x2 ŷ3−y2 x̂3

ν̂
y1 x̂3−x1 ŷ3

ν̂
x1 y2−y1 x2

ν̂

. (5.22)

The direction of the projection Π̂ : E3 → ω is determined by the vector

−→w =

 −α̂

−β̂
1

. (5.23)

Recalling (5.14) and (5.15), it is now sufficient to modify the third column of B̂ = (B̂1, B̂2, B̂3).
More precisely, we define the matrix B̃ = (B̃1, B̃2, B̃3) as

B̃1 = B̂1, B̃2 = B̂2, B̃3 = P3 −
B̂2 · P3

B̂2 · −→w
−→w . (5.24)

The coordinates of the points R1, R2, R3 are then the columns B̃1, B̃2, B̃3 respectively and the
direction of the secondary Pohlke’s projection Π̃ is represented by −→w . Thus, we have

Π̃

 x
y
z

 =

 x+ α̂z

y + β̂z
0

. (5.25)
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