Some results on Pohlke's type ellipses

Renato Manfrin

Abstract

We give here formulae for determining the Pohlke's ellipse and the secondary Pohlke's ellipse of a triad of segments in a plane. Then we apply these results to find an explicit expression of the secondary Pohlke's projection introduced in [6].

Mathematics Subject Classification: Primary: 51N10, 51N20; Secondary: 51N05.
Keywords: Pohlke's ellipses, conjugate semi-diameter, secondary Pohlke's projection.

1 Introduction

Let $O P_{1}, O P_{2}, O P_{3}$ be three non-parallel segments in a plane ω and let $\mathcal{E}_{P_{1}, P_{2}}, \mathcal{E}_{P_{2}, P_{3}}$ and $\mathcal{E}_{P_{3}, P_{1}}$ be the concentric ellipses defined by the three pairs of conjugate semi-diameters ($O P_{1}, O P_{2}$), $\left(O P_{2}, O P_{3}\right)$ and $\left(O P_{3}, O P_{1}\right)$ respectively. It was proved in [8] and then in [6] that there are at most two distinct ellipses with center O circumscribing $\mathcal{E}_{P_{1}, P_{2}}, \mathcal{E}_{P_{2}, P_{3}}, \mathcal{E}_{P_{3}, P_{1}}$.

The first, which we denote by \mathcal{E}_{P}, is the Pohlke's ellipse (see also [2], [3]). It is determined by the requirement that there exists a sphere S with center O, three points $Q_{1}, Q_{2}, Q_{3} \in S$ and a parallel projection $\Pi: \mathbb{E}^{3} \rightarrow \omega$ (i.e., a Pohlke's projection) such that:

$$
\begin{gather*}
\Pi\left(O Q_{i}\right)=O P_{i} \quad(1 \leq i \leq 3), \tag{1.1}\\
O Q_{1} \perp O Q_{2}, \quad O Q_{2} \perp O Q_{3}, \quad O Q_{3} \perp O Q_{1} . \tag{1.2}
\end{gather*}
$$

With S, Π as above, the Pohlke's ellipse \mathcal{E}_{P} for $O P_{1}, O P_{2}, O P_{3}$ is the contour of the projection onto ω of the sphere S, i.e.

$$
\begin{equation*}
\mathcal{E}_{\mathrm{P}} \stackrel{\text { def }}{=} \Pi(S \cap \pi), \tag{1.3}
\end{equation*}
$$

where π the plane through O and perpendicular to the direction of Π. Existence and uniqueness of such an ellipse are guaranteed by Pohlke's theorem of oblique axonometry [7]. See [1], [4] for an analytic proof. The other, which we denote by \mathcal{E}_{S}, is the secondary Pohlke's ellipse:

Definition 1.1 A secondary Pohlke's ellipse for $O P_{1}, O P_{2}, O P_{3}$ is an ellipse $\mathcal{E}_{\mathrm{S}} \neq \mathcal{E}_{\mathrm{P}}$, centered at O, which circumscribes the three ellipses $\mathcal{E}_{P_{1}, P_{2}}, \mathcal{E}_{P_{2}, P_{3}}, \mathcal{E}_{P_{3}, P_{1}}$.

By the results of [6] (Theorem 2.1, $(\mathbf{a}) \Leftrightarrow(\mathbf{b})$) a secondary Pohlke's ellipse $\mathcal{E}_{\mathbf{S}}$ is determined by the requirement that there exists a sphere \widetilde{S} with center O, three points $R_{1}, R_{2}, R_{3} \in \widetilde{S}$ and a parallel projection $\widetilde{\Pi}: \mathbb{E}^{3} \rightarrow \omega$ (i.e., a secondary Pohlke's projection) such that:

$$
\begin{align*}
& \widetilde{\Pi}\left(O R_{i}\right)=O P_{i} \quad(1 \leq i \leq 3), \tag{1.4}\\
& O R_{1} \perp O R_{2}, \quad O R_{2} \perp O R_{3} \quad \text { and } \quad O R_{3} \perp O R_{1}^{\prime}, \tag{1.5}\\
& \left.R_{i} \notin \widetilde{\pi} \quad \text { (i.e., } R_{i} \neq R_{i}^{\prime}\right) \quad(1 \leq i \leq 3) \tag{1.6}
\end{align*}
$$

where $\widetilde{\pi}$ is the plane through O and perpendicular to the direction of $\widetilde{\Pi}$; the point R_{i}^{\prime} is symmetric to R_{i} with respect to $\widetilde{\pi}$. With $\widetilde{S}, \widetilde{\Pi}$ and $\widetilde{\pi}$ as above, we define

$$
\begin{equation*}
\mathcal{E}_{\mathrm{S}}=\widetilde{\Pi}(\widetilde{S} \cap \widetilde{\pi}) \tag{1.7}
\end{equation*}
$$

See also [8] for an alternative approach.
Unlike the Pohlke's ellipse \mathcal{E}_{P}, which exists even if two of the segments are parallel (see Section 2), the secondary Pohlke's ellipse \mathcal{E}_{S} does not always exist. More precisely, from [6] (Theorem 2.1, equivalence $(\mathbf{a}),(\mathbf{b}) \Leftrightarrow(\mathbf{c})$) we also know that:
Theorem 1.2 Suppose the segments $O P_{1}, O P_{2}, O P_{3}$ are non-parallel. Then there exists a secondary Pohlke's ellipse \mathcal{E}_{S} if and only if

$$
\begin{equation*}
a \overrightarrow{O P_{1}}+b \overrightarrow{O P_{2}}+c \overrightarrow{O P_{3}}=0 \tag{1.8}
\end{equation*}
$$

with $a, b, c \neq 0$ such that

$$
\begin{equation*}
G(a, b, c) \stackrel{\text { def }}{=} a^{4}+b^{4}+c^{4}-2 a^{2} b^{2}-2 a^{2} c^{2}-2 b^{2} c^{2}>0 \tag{1.9}
\end{equation*}
$$

Further, if \mathcal{E}_{S} exists then \mathcal{E}_{S} is unique.
The preceding definitions of \mathcal{E}_{P} and \mathcal{E}_{S} are not invariant under affine transformations of the euclidean space \mathbb{E}^{3} due to the requirement that S, \widetilde{S} be spheres and also for the orthogonality conditions in (1.2) and (1.5), (1.6). However, we show here that under affine transformation of the plane ω the Pohlke's ellipse of the segments $O P_{1}, O P_{2}, O P_{3}$ transforms into the Pohlke's ellipse of the transformed segments and the same is true for the secondary Pohlke's ellipse when it exists, i.e., if (1.8)-(1.9) holds.
Notation 1.3 For greater clarity we will often write

$$
\begin{equation*}
\mathcal{E}_{\mathrm{P}}\left(O, P_{1}, P_{2}, P_{3}\right) \tag{1.10}
\end{equation*}
$$

instead of \mathcal{E}_{P}, and also $\mathcal{E}_{\mathbb{S}}\left(O, P_{1}, P_{2}, P_{3}\right)$ instead of $\mathcal{E}_{\mathbb{S}}$, to make explicit the triad of segments from which a given Pohlke's ellipse or a given secondary Pohlke's ellipse refers.

In this article we will demonstrate a number of facts about Pohlke's ellipses and secondary Pohlke's ellipses which we can summarize as follows:
(i) In Section 3, assuming the segments $O P_{1}, O P_{2}, O P_{3}$ are not all parallel, we explicitly determine a pair of conjugate semi-diameters of the Pohlke's ellipse \mathcal{E}_{P} and then we apply this result to prove that if $\Psi: \omega \rightarrow \omega$ is any affine transformation then

$$
\begin{equation*}
\Psi\left(\mathcal{E}_{\mathrm{P}}\left(O, P_{1}, P_{2}, P_{3}\right)\right)=\mathcal{E}_{\mathrm{P}}\left(\Psi(O), \Psi\left(P_{1}\right), \Psi\left(P_{2}\right), \Psi\left(P_{3}\right)\right) . \tag{1.11}
\end{equation*}
$$

(ii) In Section 4, assuming $O P_{1}, O P_{2}, O P_{3}$ are non-parallel and (1.8)-(1.9) holds, we demonstrate similar results for the secondary Pohlke's ellipse \mathcal{E}_{S}. In particular, noting that $\mathcal{E}_{\mathbf{S}}\left(\Psi(O), \Psi\left(P_{1}\right), \Psi\left(P_{2}\right), \Psi\left(P_{3}\right)\right)$ exists because condition (1.8)-(1.9) is invariant under affine transformations of the plane ω, we prove that

$$
\begin{equation*}
\Psi\left(\mathcal{E}_{\mathbf{S}}\left(O, P_{1}, P_{2}, P_{3}\right)\right)=\mathcal{E}_{\mathbf{S}}\left(\Psi(O), \Psi\left(P_{1}\right), \Psi\left(P_{2}\right), \Psi\left(P_{3}\right)\right) \tag{1.12}
\end{equation*}
$$

Using (1.11) and (1.12) we also show that

$$
\begin{equation*}
\operatorname{area}\left(\mathcal{E}_{\mathrm{P}}\right)<\operatorname{area}\left(\mathcal{E}_{\mathrm{S}}\right), \tag{1.13}
\end{equation*}
$$

because it holds if two of the segments $O P_{1}, O P_{2}, O P_{3}$ are perpendicular and equal.
(iii) In Section 5, assuming $O P_{1}, O P_{2}, O P_{3}$ are non-parallel and (1.8)-(1.9) holds, we show that

$$
\begin{equation*}
\mathcal{E}_{\mathbb{S}}\left(O, P_{1}, P_{2}, P_{3}\right)=\mathcal{E}_{\mathrm{P}}\left(O, P_{1}, P_{2}, X_{3}\right), \tag{1.14}
\end{equation*}
$$

where the point X_{3} is such that

$$
\begin{equation*}
\pm \overrightarrow{O X_{3}}=\frac{a\left(a^{2}-b^{2}-c^{2}\right)}{c \sqrt{G}} \overrightarrow{O P_{1}}+\frac{b\left(a^{2}-b^{2}+c^{2}\right)}{c \sqrt{G}} \overrightarrow{O P_{2}}, \tag{1.15}
\end{equation*}
$$

with $G=G(a, b, c)$ the quantity defined by (1.9).
Similarly we can prove that $\mathcal{E}_{\mathbf{S}}\left(O, P_{1}, P_{2}, P_{3}\right)=\mathcal{E}_{\mathrm{P}}\left(O, X_{1}, P_{2}, P_{3}\right)=\mathcal{E}_{\mathrm{P}}\left(O, P_{1}, X_{2}, P_{3}\right)$ by appropriately defining X_{1}, X_{2} respectively.
In Section 5.1, applying the identity (1.14) and the formulae of [4] for Pohlke's projection, we finally give a procedure to explicitly determine the secondary Pohlke's projection $\widetilde{\Pi}$ and the points R_{1}, R_{2}, R_{3} such that conditions (1.4), (1.5), (1.6) hold.

2 Preliminaries

In this section we suppose $O P_{1}, O P_{2}, O P_{3}$ are not all parallel. ${ }^{1}$ To determine the Pohlke's ellipse \mathcal{E}_{P} we resume some of the arguments introduced in [4,6]. Namely, we adopt a system of coordinate axes x, y, z such that ω is the plane $z=0$,

$$
O=\left(\begin{array}{l}
0 \tag{2.1}\\
0 \\
0
\end{array}\right), \quad P_{1}=\left(\begin{array}{c}
x_{1} \\
y_{1} \\
0
\end{array}\right), \quad P_{2}=\left(\begin{array}{c}
x_{2} \\
y_{2} \\
0
\end{array}\right), \quad P_{3}=\left(\begin{array}{c}
x_{3} \\
y_{3} \\
0
\end{array}\right)
$$

and we also consider the matrix

$$
A=\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \tag{2.2}\\
y_{1} & y_{2} & y_{3} \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{c}
A_{1} \\
A_{2} \\
0
\end{array}\right) .
$$

The rows A_{1}, A_{2} are linearly independent (i.e., $\operatorname{car}(A)=2$) because $O P_{1}, O P_{2}, O P_{3}$ are not all parallel. Hence can we define:

$$
\begin{equation*}
\gamma \stackrel{\text { def }}{=} \arccos \left(\frac{A_{1} \cdot A_{2}}{\left\|A_{1}\right\|\left\|A_{2}\right\|}\right), \quad \lambda \stackrel{\text { def }}{=} \frac{\left\|A_{1}\right\|}{\left\|A_{2}\right\|} . \tag{2.3}
\end{equation*}
$$

Noting that $0<\gamma<\pi$ and $\lambda>0$, we can also introduce the quantities:

$$
\begin{equation*}
\eta \stackrel{\text { def }}{=} \frac{\lambda^{2}+1+\sqrt{\left(\lambda^{2}+1\right)^{2}-4 \lambda^{2} \sin ^{2} \gamma}}{2 \lambda^{2} \sin ^{2} \gamma} \tag{2.4}
\end{equation*}
$$

[^0]and then ${ }^{2}$
\[

$$
\begin{equation*}
(\alpha, \beta) \stackrel{\text { def }}{=} \pm\left(\sqrt{\eta \lambda^{2}-1}, \operatorname{sgn}(\cos \gamma) \sqrt{\eta-1}\right) \tag{2.5}
\end{equation*}
$$

\]

where

$$
\operatorname{sgn}(t) \stackrel{\text { def }}{=}\left\{\begin{array}{cc}
1 & \text { if } \quad t \geq 0 \tag{2.6}\\
-1 & \text { if } \quad t<0
\end{array}\right.
$$

Finally, we define the parallel projection $\Pi: \mathbb{E}^{3} \rightarrow \omega$ as

$$
\Pi\left(\begin{array}{l}
x \tag{2.7}\\
y \\
z
\end{array}\right) \stackrel{\text { def }}{=}\left(\begin{array}{c}
x+\alpha z \\
y+\beta z \\
0
\end{array}\right) .
$$

The Pohlke's ellipse \mathcal{E}_{P} of $O P_{1}, O P_{2}, O P_{3}$ is then the contour of the projection into the plane ω of the sphere S with center O and radius

$$
\begin{equation*}
\rho \stackrel{\text { def }}{=} \frac{\left\|A_{1}\right\|}{\lambda \sqrt{\eta}}=\frac{\left\|A_{2}\right\|}{\sqrt{\eta}} \tag{2.8}
\end{equation*}
$$

Namely, $\mathcal{E}_{\mathrm{P}}=\Pi(S \cap \pi)$ where π is the plane $\pi: \alpha x+\beta y-z=0$. See [4, Sections 3 and 4].
Remark 2.1 It is worthwhile noting that \mathcal{E}_{P} uniquely determines the sphere S centered at O, because the radius of S must be equal to the semi-minor axis of \mathcal{E}_{P}. Furthermore, the Pohlke's projection Π is determined up to symmetry with respect to the plane ω. Namely, if the semi-axes of \mathcal{E}_{P} are given by two perpendicular segments $O V, O W \subset \omega$ such that

$$
0<|O V| \leq|O W| \quad \text { and } \quad W=\left(\begin{array}{c}
p \tag{2.9}\\
q \\
0
\end{array}\right),
$$

then S has radius $\rho=|O V|$ and the direction of projection is given by the column vector

$$
\vec{n}=\left(\begin{array}{c}
\delta p \tag{2.10}\\
\delta q \\
\pm 1
\end{array}\right) \quad \text { with } \quad \delta=\sqrt{\frac{p^{2}+q^{2}-\rho^{2}}{\rho^{2}\left(p^{2}+q^{2}\right)}}
$$

If $\delta=0$ then \mathcal{E}_{P} is a circle and we have only the orthogonal projection. Conversely, if $\delta>0$ the two possible signs of the last component of \vec{n} correspond to two distinct projections which are symmetric with respect to the plane ω. Indeed, if $\bar{\Pi}: \mathbb{E}^{3} \rightarrow \omega$ is defined by

$$
\begin{equation*}
\bar{\Pi}(P)=\Pi(\bar{P}) \quad \text { where } \bar{P} \text { is symmetric to } P \text { with respect to } \omega, \tag{2.11}
\end{equation*}
$$

then the conditions (1.1) and (1.2) are verified with $\bar{\Pi}$ instead of Π and $\bar{Q}_{1}, \bar{Q}_{2}, \bar{Q}_{3}$ instead of Q_{1}, Q_{2}, Q_{3} respectively. Given two projections $\Pi_{1}, \Pi_{2}: \mathbb{E}^{3} \rightarrow \omega$, we will later write that

$$
\begin{equation*}
\Pi_{1} \sim \Pi_{2} \quad \Leftrightarrow \quad \Pi_{1}=\Pi_{2} \quad \text { or } \quad \Pi_{1}=\bar{\Pi}_{2} . \tag{2.12}
\end{equation*}
$$

The same considerations apply to the secondary Pohlke's ellipse $\mathcal{E}_{\mathbb{S}}$ (and to the corresponding sphere \widetilde{S} and projection $\widetilde{\Pi})$ when condition (1.8)-(1.9) holds.

[^1]Remark 2.2 Looking at (2.7), it is worth noting that the Pohlke's projection Π depends only on the quantities γ, λ which we have defined in (2.3). Taking into account (2.8), it is also immediate that: \mathcal{E}_{P} remains unchanged if $\left\|A_{1}\right\|,\left\|A_{2}\right\|$ and $A_{1} \cdot A_{2}$ do not vary.

Using (2.10) and the expressions (3.1) of the lengths of the semi-axes of \mathcal{E}_{P}, it is possible to prove that the converse of this last statement is also true.

3 The Pohlke's ellipse \mathcal{E}_{P}

As in the previous section, we suppose that $O P_{1}, O P_{2}, O P_{3}$ are not all parallel and we use a system of coordinate axes x, y, z such that ω is the plane $z=0$ and (2.1) holds.

Lemma 3.1 The lengths σ_{-}, σ_{+}of the semi-axes of the Pohlke's ellipse \mathcal{E}_{P} are given by

$$
\begin{equation*}
\left(\sigma_{ \pm}\right)^{2}=\frac{\left\|A_{1}\right\|^{2}+\left\|A_{2}\right\|^{2} \pm \sqrt{\left(\left\|A_{1}\right\|^{2}+\left\|A_{2}\right\|^{2}\right)^{2}-4\left\|A_{1} \wedge A_{2}\right\|^{2}}}{2} \tag{3.1}
\end{equation*}
$$

Proof. Since $\mathcal{E}_{\mathrm{P}}=\Pi(S \cap \pi)$, it is clear that $\sigma_{-}=\rho$ where ρ is the radius of S given by (2.8). Furthermore, from (2.7) we can easily see that $\sigma_{+}=\rho \sqrt{1+\alpha^{2}+\beta^{2}}$ because the direction of projection is given by the column vector

$$
\vec{u}=\left(\begin{array}{c}
-\alpha \tag{3.2}\\
-\beta \\
1
\end{array}\right)
$$

Taking account (2.4) and (2.8), we have

$$
\begin{equation*}
\sigma_{-}^{2}=\frac{\left\|A_{2}\right\|^{2}}{\eta}=\left\|A_{2}\right\|^{2} \frac{\lambda^{2}+1-\sqrt{\left(\lambda^{2}+1\right)^{2}-4 \lambda^{2} \sin ^{2} \gamma}}{2} . \tag{3.3}
\end{equation*}
$$

While, by (2.4), (2.5) and (2.8) we obtain

$$
\begin{align*}
\sigma_{+}^{2} & =\rho^{2}\left(1+\alpha^{2}+\beta^{2}\right) \\
& =\frac{\left\|A_{2}\right\|^{2}}{\eta}\left(\eta \lambda^{2}+\eta-1\right)=\left\|A_{2}\right\|^{2}\left(\lambda^{2}+1-\eta^{-1}\right) \tag{3.4}\\
& =\left\|A_{2}\right\|^{2} \frac{\lambda^{2}+1+\sqrt{\left(\lambda^{2}+1\right)^{2}-4 \lambda^{2} \sin ^{2} \gamma}}{2} .
\end{align*}
$$

Using the definitions (2.3) of γ and λ and noting that

$$
\begin{equation*}
\left\|A_{1}\right\|\left\|A_{2}\right\| \sin \gamma=\left\|A_{1} \wedge A_{2}\right\|, \tag{3.5}
\end{equation*}
$$

we obtain (3.1).
Remark 3.2 σ_{-}, σ_{+}are also the lengths of the semi-axes of the ellipse \mathcal{E} defined by the pair of conjugate semi-diameters $\left(O A_{1}, O A_{2}\right) .{ }^{3}$ In fact, by Apollonius's theorems on conjugate diameters, the lengths a, b of these semi-axes satisfy the system

$$
\begin{equation*}
a^{2}+b^{2}=\left\|A_{1}\right\|^{2}+\left\|A_{2}\right\|^{2}, \quad a b=\left\|A_{1} \wedge A_{2}\right\| . \tag{3.6}
\end{equation*}
$$

[^2]Thus we immediately find

$$
\begin{equation*}
a^{2}, b^{2}=\frac{\left\|A_{1}\right\|^{2}+\left\|A_{2}\right\|^{2} \pm \sqrt{\left(\left\|A_{1}\right\|^{2}+\left\|A_{2}\right\|^{2}\right)^{2}-4\left\|A_{1} \wedge A_{2}\right\|^{2}}}{2} \tag{3.7}
\end{equation*}
$$

i.e., formula (3.1).

Remark 3.3 Noting (2.2), from (3.1) we get

$$
\begin{equation*}
\sigma_{-}^{2}+\sigma_{+}^{2}=\left\|A_{1}\right\|^{2}+\left\|A_{2}\right\|^{2}=\left|O P_{1}\right|^{2}+\left|O P_{2}\right|^{2}+\left|O P_{3}\right|^{2} . \tag{3.8}
\end{equation*}
$$

See also [2, Main Theorem 3.1] for an alternative proof of (3.8).
Lemma 3.4 If one of the segments $O P_{1}, O P_{2}, O P_{3}$ vanishes then \mathcal{E}_{P} is the ellipse determined by the pair of conjugate semi-diameters given by the other two segments.

Proof. Suppose $O P_{3}$ vanishes. Then we must prove that $\mathcal{E}_{\mathrm{P}}=\mathcal{E}_{P_{1}, P_{2}}$. Namely, \mathcal{E}_{P} is determined by the pair of conjugate semi-diameters ($O P_{1}, O P_{2}$). We can argue in various ways:
(i) Since $P_{3}=O$, in (1.1) the direction of the projection Π is given by the segments $O Q_{3}$. By the orthogonality conditions (1.2) this means that $Q_{1}, Q_{2} \in \pi$. Hence, it follows that

$$
\begin{equation*}
\mathcal{E}_{P_{1}, P_{2}}=\Pi(S \cap \pi)=\mathcal{E}_{\mathrm{P}} . \tag{3.9}
\end{equation*}
$$

(ii) Since \mathcal{E}_{P} and $\mathcal{E}_{P_{1}, P_{2}}$ are concentric and tangent at some point P, there exists $P^{\prime}, P^{\prime \prime} \neq O$, with $O P^{\prime} \| O P^{\prime \prime}$ and $O P^{\prime} \supset O P^{\prime \prime}$, such that \mathcal{E}_{P} and $\mathcal{E}_{P_{1}, P_{2}}$ are determined by the pairs of conjugate semi-diameters $\left(O P, O P^{\prime}\right)$ and $\left(O P, O P^{\prime \prime}\right)$ respectively. By Apollonius's theorem on conjugate semi-diameters and Remark 3.3 we have

$$
\begin{equation*}
|O P|^{2}+\left|O P^{\prime}\right|^{2}=\left|O P_{1}\right|^{2}+\left|O P_{2}\right|^{2}=|O P|^{2}+\left|O P^{\prime \prime}\right|^{2} . \tag{3.10}
\end{equation*}
$$

This gives $\left|O P^{\prime}\right|=\left|O P^{\prime \prime}\right|$ and we deduce that $\mathcal{E}_{\mathrm{P}}=\mathcal{E}_{P_{1}, P_{2}}$ because they are determined by the same pair of conjugate semi-diameters.
(iii) Lemma 3.4 is immediate if we also consider the degenerate ellipses. ${ }^{1}$ Indeed, if $O P_{3}=O$ then $\mathcal{E}_{P_{1}, P_{3}}=\mathcal{E}_{P_{1}, O}=P_{1} P_{1}^{\prime}$ and $\mathcal{E}_{P_{2}, P_{3}}=\mathcal{E}_{P_{2}, O}=P_{2} P_{2}^{\prime}$, where $P_{1}^{\prime}, P_{2}^{\prime}$ are symmetric to P_{1}, P_{2} respectively, with respect to the point O. It follows that $P_{1}, P_{2} \in \mathcal{E}_{\mathrm{p}}$, thus \mathcal{E}_{P} and $\mathcal{E}_{P_{1}, P_{2}}$ are tangent at P_{1} and P_{2}. Hence $\mathcal{E}_{\mathrm{P}}=\mathcal{E}_{P_{1}, P_{2}}$. See [6, Section 3].

Having proved Lemma3.4, we now suppose that the segments $O P_{1}, O P_{2}, O P_{3}$ do not vanish. We begin with a special case:

Lemma 3.5 Let us suppose that

$$
U_{1}=\left(\begin{array}{l}
1 \tag{3.11}\\
0 \\
0
\end{array}\right), \quad U_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad U_{3}=\left(\begin{array}{l}
h \\
k \\
0
\end{array}\right)
$$

with h, k not both zero, i.e., we assume $U_{3} \neq O$. Then the semi-axes of the Pohlke's ellipse $\mathcal{E}_{\mathrm{P}}\left(O, U_{1}, U_{2}, U_{3}\right)$ are represented by the segments $O \Sigma_{-}$and $O \Sigma_{+}$with

$$
\Sigma_{-}=\frac{ \pm 1}{\sqrt{h^{2}+k^{2}}}\left(\begin{array}{c}
k \tag{3.12}\\
-h \\
0
\end{array}\right), \quad \Sigma_{+}= \pm \sqrt{\frac{1+h^{2}+k^{2}}{h^{2}+k^{2}}}\left(\begin{array}{c}
h \\
k \\
0
\end{array}\right) .
$$

Proof. According to (2.1), (2.2) we set

$$
A=\left(\begin{array}{ccc}
1 & 0 & h \tag{3.13}\\
0 & 1 & k \\
0 & 0 & 0
\end{array}\right)
$$

and then we follow the scheme from (2.3) to (2.8). We have

$$
\begin{equation*}
\cos \gamma=\frac{h k}{\sqrt{1+h^{2}} \sqrt{1+k^{2}}}, \quad \lambda=\frac{\sqrt{1+h^{2}}}{\sqrt{1+k^{2}}} \tag{3.14}
\end{equation*}
$$

From this we get $\eta=1+k^{2}, \rho=\left\|A_{2}\right\| \eta^{-1 / 2}=1$ and

$$
\begin{equation*}
(\alpha, \beta)= \pm(|h|, \operatorname{sgn}(h k)|k|)= \pm(h, k) \tag{3.15}
\end{equation*}
$$

It follows that the lengths of the semi-axes are

$$
\begin{equation*}
\sigma_{-}=1 \quad \text { and } \quad \sigma_{+}=\sqrt{1+h^{2}+k^{2}} \tag{3.16}
\end{equation*}
$$

Moreover, the direction of projection onto the image plane ω is given by the nonzero vector $\vec{v}=\left(\begin{array}{c}-h \\ -k \\ 1\end{array}\right)$ or $\left(\begin{array}{l}h \\ k \\ 1\end{array}\right)$. This means that

$$
O \Sigma_{-}\left\|\left(\begin{array}{c}
h \\
-k \\
0
\end{array}\right), \quad O \Sigma_{+}\right\|\left(\begin{array}{c}
h \\
k \\
0
\end{array}\right)
$$

and then we can easily derive the expressions (3.12) for Σ_{-}and Σ_{+}.
Remark 3.6 It is easy to find the Pohlke's projection corresponding to U_{1}, U_{2}, U_{3} directly. Indeed, in view of $(3.11), \mathcal{E}_{U_{1}, U_{2}}$ is a circle with center O and radius $\rho=1$. Hence, $\mathcal{E}_{\mathrm{P}}\left(O, U_{1}, U_{2}, U_{3}\right)$ must have semi-minor axis $\sigma_{-}=1$. This means that the sphere S has radius $\rho=1$ and that the conditions (1.1), (1.2) are satisfied (with $\left.P_{i}=U_{i}, 1 \leq i \leq 3\right)$ taking $Q_{1}=U_{1}, Q_{2}=U_{2}$,

$$
Q_{3}= \pm\left(\begin{array}{l}
0 \tag{3.17}\\
0 \\
1
\end{array}\right)
$$

and the direction of the projection Π parallel to the segment $Q_{3} U_{3}$, i.e., the vector \vec{v} above. See [6, Section 4] for more details.

We are now in position to obtain the expressions of the conjugate semi-diameters of \mathcal{E}_{P} in the general case:

Lemma 3.7 Suppose $O P_{1} \nVdash O P_{2}$ and

$$
\begin{equation*}
\overrightarrow{O P_{3}}=h \overrightarrow{O P_{1}}+k \overrightarrow{O P_{2}} \tag{3.18}
\end{equation*}
$$

with h, k not both zero (i.e., $O P_{3} \neq O$). Then the segments $O V, O W$ with

$$
\begin{equation*}
\overrightarrow{O V}= \pm \frac{k \overrightarrow{O P_{1}}-h \overrightarrow{O P_{2}}}{\sqrt{h^{2}+k^{2}}} \quad \text { and } \quad \overrightarrow{O W}= \pm \sqrt{\frac{1+h^{2}+k^{2}}{h^{2}+k^{2}}}\left(h \overrightarrow{O P_{1}}+k \overrightarrow{O P_{2}}\right) \tag{3.19}
\end{equation*}
$$

are conjugate semi-diameters of the Pohlke's ellipse \mathcal{E}_{P}.

Proof. Noting that $O V \nVdash O W$, it is enough to show that $\mathcal{E}_{\mathrm{P}}\left(O, P_{1}, P_{2}, P_{3}\right)$ coincides with the Pohlke's ellipse $\mathcal{E}_{\mathrm{P}}(O, V, W, O)$, where the third segment vanishes. Indeed, by Lemma 3.4, $O V$ and $O W$ are conjugate semi-diameters of $\mathcal{E}_{\mathrm{P}}(O, V, W, O)$.

To prove this fact, we consider the matrix \mathcal{A} given by the coordinates of the points V, W and O. Namely, we set

$$
\mathcal{A}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{h^{2}+k^{2}}}\left(k x_{1}-h x_{2}\right) & \sqrt{\frac{1+h^{2}+k^{2}}{h^{2}+k^{2}}}\left(h x_{1}+k x_{2}\right) & 0 \tag{3.20}\\
\frac{1}{\sqrt{h^{2}+k^{2}}}\left(k y_{1}-h y_{2}\right) & \sqrt{\frac{1+h^{2}+k^{2}}{h^{2}+k^{2}}}\left(h y_{1}+k y_{2}\right) & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{c}
\mathcal{A}_{1} \\
\mathcal{A}_{2} \\
0
\end{array}\right)
$$

where, for simplicity, in (3.19) we always choose the sign " + ". Taking account (3.18), that is

$$
\begin{equation*}
x_{3}=h x_{1}+k x_{2} \quad \text { and } \quad y_{3}=h y_{1}+k y_{2}, \tag{3.21}
\end{equation*}
$$

we then evaluate $\left\|\mathcal{A}_{1}\right\|,\left\|\mathcal{A}_{2}\right\|$ and $\mathcal{A}_{1} \cdot \mathcal{A}_{2}$. We have:

$$
\begin{align*}
\left\|\mathcal{A}_{1}\right\|^{2} & =\frac{\left(k x_{1}-h x_{2}\right)^{2}}{h^{2}+k^{2}}+\frac{1+h^{2}+k^{2}}{h^{2}+k^{2}}\left(h x_{1}+k x_{2}\right)^{2} \\
& =\frac{\left(h x_{1}+k x_{2}\right)^{2}+\left(k x_{1}-h x_{2}\right)^{2}}{h^{2}+k^{2}}+\left(h x_{1}+k x_{2}\right)^{2} \tag{3.22}\\
& =x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=\left\|A_{1}\right\|^{2}
\end{align*}
$$

and in the same way we can show that $\left\|\mathcal{A}_{2}\right\|^{2}=\left\|A_{2}\right\|^{2}$.
Further, we consider the scalar product $\mathcal{A}_{1} \cdot \mathcal{A}_{2}$. We have:

$$
\begin{align*}
\mathcal{A}_{1} \cdot \mathcal{A}_{2}= & \frac{\left(k x_{1}-h x_{2}\right)\left(k y_{1}-h y_{2}\right)}{h^{2}+k^{2}}+\frac{1+h^{2}+k^{2}}{h^{2}+k^{2}}\left(h x_{1}+k x_{2}\right)\left(h y_{1}+k y_{2}\right) \\
= & \frac{\left(h x_{1}+k x_{2}\right)\left(h y_{1}+k y_{2}\right)+\left(k x_{1}-h x_{2}\right)\left(k y_{1}-h y_{2}\right)}{h^{2}+k^{2}} \tag{3.23}\\
& +\left(h x_{1}+k x_{2}\right)\left(h y_{1}+k y_{2}\right) \\
= & x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}=A_{1} \cdot A_{2} .
\end{align*}
$$

In conclusion, we find that

$$
\begin{equation*}
\left\|\mathcal{A}_{1}\right\|=\left\|A_{1}\right\|, \quad\left\|\mathcal{A}_{2}\right\|=\left\|A_{2}\right\| \quad \text { and } \quad \mathcal{A}_{1} \cdot \mathcal{A}_{2}=A_{1} \cdot A_{2} . \tag{3.24}
\end{equation*}
$$

By Remark 2.2, this means that $\mathcal{E}_{\mathrm{P}}(O, V, W, O)=\mathcal{E}_{\mathrm{P}}\left(O P_{1}, P_{2}, P_{3}\right)$.
Summing up from Lemmas 3.4, 3.5 and 3.7, we get:
Theorem 3.8 Let us suppose that $O P_{1} \nVdash O P_{2}$. If $O P_{3}=O$ then the segments $O P_{1}, O P_{2}$ are conjugate semi-diameters of the Pohlke's ellipse \mathcal{E}_{P}. Conversely, if $O P_{3} \neq O$ then a pair of conjugate semi-diameters is given by the segments $O V, O W$ with

$$
\begin{equation*}
\overrightarrow{O V}= \pm \frac{k \overrightarrow{O P_{1}}-h \overrightarrow{O P_{2}}}{\sqrt{h^{2}+k^{2}}} \quad \text { and } \quad \overrightarrow{O W}= \pm \sqrt{\frac{1+h^{2}+k^{2}}{h^{2}+k^{2}}} \overrightarrow{O P_{3}} \tag{3.25}
\end{equation*}
$$

where the coefficients h, k are such that

$$
\begin{equation*}
\overrightarrow{O P_{3}}=h \overrightarrow{O P_{1}}+k \overrightarrow{O P_{2}} . \tag{3.26}
\end{equation*}
$$

With U_{1}, U_{2}, U_{3} as in (3.11) we also have:

Lemma 3.9 Let $\Phi: \omega \rightarrow \omega$ be the an affine transformation and let us suppose that

$$
\begin{equation*}
O P_{1}=\Phi\left(O U_{1}\right), \quad O P_{2}=\Phi\left(O U_{2}\right), \quad O P_{3}=\Phi\left(O U_{3}\right) \tag{3.27}
\end{equation*}
$$

Then $\Phi\left(\mathcal{E}_{\mathrm{P}}\left(O, U_{1}, U_{2}, U_{3}\right)\right)=\mathcal{E}_{\mathrm{P}}\left(O, P_{1}, P_{2}, P_{3}\right)$.
Proof. From (3.27) it is clear that $O U_{1} \nVdash O U_{2} \Rightarrow O P_{1} \nVdash O P_{2}$ and that

$$
\begin{equation*}
\overrightarrow{O U_{3}}=h \overrightarrow{O U_{1}}+k \overrightarrow{O U_{2}} \quad \Rightarrow \quad \overrightarrow{O P_{3}}=h \overrightarrow{O P_{1}}+k \overrightarrow{O P_{2}} \tag{3.28}
\end{equation*}
$$

If $U_{3}=O$ then $P_{3}=O$ and by the first part of Theorem 3.8, we know that

$$
\mathcal{E}_{\mathrm{P}}\left(O, U_{1}, U_{2}, O\right) \quad \text { and } \quad \mathcal{E}_{\mathrm{P}}\left(O, P_{1}, P_{2}, O\right)
$$

are determined by the pairs of conjugate semi-diameters $\left(O U_{1}, O U_{2}\right)$ and $\left(O P_{1}, O P_{2}\right)$ respectively. Since $O P_{1}=\Phi\left(O U_{1}\right)$ and $O P_{2}=\Phi\left(O U_{2}\right)$ it follows that

$$
\begin{equation*}
\Phi\left(\mathcal{E}_{\mathrm{P}}\left(O, U_{1}, U_{2}, O\right)\right)=\mathcal{E}_{\mathrm{P}}\left(O, P_{1}, P_{2}, O\right) \tag{3.29}
\end{equation*}
$$

Conversely, by the second part of Theorem 3.8, if $U_{3} \neq O$ then the ellipses $\mathcal{E}_{\mathrm{P}}\left(O, U_{1}, U_{2}, U_{3}\right)$ and $\mathcal{E}_{\mathrm{P}}\left(O, P_{1}, P_{2}, P_{3}\right)$ are determined by the pairs of conjugate semi-diameters $\left(O \Sigma_{-}, O \Sigma_{+}\right)$(given by (3.12)) and ($O V, O W$) respectively. Since

$$
\begin{equation*}
\Phi\left(\overrightarrow{O \Sigma_{-}}\right)= \pm \overrightarrow{O V} \quad \text { and } \quad \Phi\left(\overrightarrow{O \Sigma_{+}}\right)= \pm \overrightarrow{O W} \tag{3.30}
\end{equation*}
$$

we come to the same conclusion.
More generally, applying Lemma 3.9, we can easily prove the following:
Theorem 3.10 Let $\Psi: \omega \rightarrow \omega$ be any affine transformation. Suppose the segments $O P_{1}, O P_{2}$, $O P_{3}$ are not all parallel and let \mathcal{E}_{P} be the corresponding Pohlke's ellipse. Then $\Psi\left(\mathcal{E}_{\mathrm{P}}\right)$ is the Pohlke's ellipse corresponding to the triad of segments $\Psi\left(O P_{1}\right), \Psi\left(O P_{2}\right), \Psi\left(O P_{3}\right)$.

Remark 3.11 Suppose the segments $O P_{1}, O P_{2}, O P_{3}$ are not all parallel and do not vanish. Let $T_{i j}(i \neq j)$ be a point of contact of $\mathcal{E}_{\mathrm{P}}\left(O, P_{1}, P_{2}, P_{3}\right)$ with $\mathcal{E}_{P_{i}, P_{j}}$ and let $t_{i j}$ be the common tangent line at $T_{i j}$. Applying Theorem 3.10 we can easily show that

$$
\begin{equation*}
t_{i j} \| O P_{k} \quad(k \neq i, j) \tag{3.31}
\end{equation*}
$$

Indeed, taking into account Lemma 3.5, if $O P_{i} \nVdash O P_{j}$ it is sufficient to observe that the statement is true for the ellipses $\mathcal{E}_{\mathrm{P}}\left(O, U_{1}, U_{2}, U_{3}\right)$ and $\mathcal{E}_{U_{1}, U_{2}}$.
Conversely, if $O P_{i} \| O P_{j}$, taking $h \neq 0$ and $k=0$ in (3.11), we note that the conclusion is true for $\mathcal{E}_{\mathrm{P}}\left(O, U_{1}, U_{2}, U_{3}\right)$ and the degenerate ellipses $\mathcal{E}_{U_{1}, U_{3}}$, where $O U_{1} \| O U_{3}, U_{3} \neq O .^{1}$ This result was first derived in [3, Theorem 2] through synthetic methods.

4 The secondary Pohlke's ellipse \mathcal{E}_{S}

In this section we suppose that $O P_{1}, O P_{2}, O P_{3}$ are non-parallel (i.e., $O P_{i} \nVdash O P_{j}$ if $i \neq j$) and

$$
\begin{equation*}
\overrightarrow{O P_{3}}=h \overrightarrow{O P_{1}}+k \overrightarrow{O P_{2}} \tag{4.1}
\end{equation*}
$$

with $h, k \neq 0$ such that

$$
\begin{equation*}
g(h, k) \stackrel{\text { def }}{=} h^{4}+k^{4}-2 h^{2} k^{2}-2 h^{2}-2 k^{2}+1>0 . \tag{4.2}
\end{equation*}
$$

By Theorem 1.2 there exists a unique secondary Pohlke's ellipse $\mathcal{E}_{\mathbb{S}}\left(O, P_{1}, P_{2}, P_{3}\right) .{ }^{4}$
As in the previous section we use a system of coordinate axes x, y, z such that ω is the plane $z=0$ and (2.1) holds. Also we first consider the triad of segments $O U_{1}, O U_{2}, O U_{3}$ where

$$
U_{1}=\left(\begin{array}{l}
1 \tag{4.3}\\
0 \\
0
\end{array}\right), \quad U_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad U_{3}=\left(\begin{array}{c}
h \\
k \\
0
\end{array}\right) \quad \text { with } \quad h, k \neq 0
$$

as above. Then, since $O U_{1}, O U_{2}, O U_{3}$ are non-parallel and

$$
\begin{equation*}
\overrightarrow{\mathrm{OU}_{3}}=h \overrightarrow{\mathrm{OU}_{1}}+k \overrightarrow{\mathrm{OU}_{2}}, \tag{4.4}
\end{equation*}
$$

the secondary Pohlke's ellipse $\mathcal{E}_{\mathbf{S}}\left(O, U_{1}, U_{2}, U_{3}\right)$ exists and it is unique. More precisely, from [6, Section 4], we know that the conditions (1.4), (1.5) and (1.6) (with $P_{i}=U_{i}$, for $1 \leq i \leq 3$) are verified by taking: \widetilde{S} the sphere with center O and radius $\rho=1$, the points

$$
R_{1}=U_{1}, \quad R_{2}=U_{2} \quad \text { and } \quad R_{3}=\frac{1}{h^{2}-k^{2}+1}\left(\begin{array}{c}
2 h \tag{4.5}\\
0 \\
\pm \sqrt{g(h, k)}
\end{array}\right)
$$

where $g(h, k)$ is the function defined in (4.2). ${ }^{5}$ See formula (90) of [6]. This means that the direction of the projection $\widetilde{\Pi}$ is given by the vector $\overrightarrow{R_{3} U_{3}}$. From these facts it follows that:

Lemma 4.1 Suppose (4.2), (4.3) hold. Then the semi-axes of the secondary Pohlke's ellipse $\mathcal{E}_{\mathrm{S}}\left(O, U_{1}, U_{2}, U_{3}\right)$ are represented by the segments $O \widetilde{\Sigma}_{-}$and $O \widetilde{\Sigma}_{+}$with

$$
\widetilde{\Sigma}_{-}=\frac{ \pm 1}{\sqrt{H^{2}+K^{2}}}\left(\begin{array}{c}
K \tag{4.6}\\
-H \\
0
\end{array}\right), \quad \widetilde{\Sigma}_{+}= \pm \sqrt{\frac{g+H^{2}+K^{2}}{g\left(H^{2}+K^{2}\right)}}\left(\begin{array}{c}
H \\
K \\
0
\end{array}\right)
$$

where $g=g(h, k)$ and

$$
\begin{equation*}
H \stackrel{\text { def }}{=} h\left(h^{2}-k^{2}-1\right), \quad K \stackrel{\text { def }}{=} k\left(h^{2}-k^{2}+1\right) . \tag{4.7}
\end{equation*}
$$

[^3]Proof. From (4.5) we have

$$
\overrightarrow{R_{3} U_{3}}=\frac{1}{h^{2}-k^{2}+1}\left(\begin{array}{c}
h\left(h^{2}-k^{2}-1\right) \tag{4.8}\\
k\left(h^{2}-k^{2}+1\right) \\
\mp \sqrt{g(h, k)}
\end{array}\right)
$$

Thus multiplying the right hand side of (4.8) by the factor $\frac{h^{2}-k^{2}-1}{\sqrt{g(h, k)}}$ we see that the direction of projection is given by the vector

$$
\vec{w}=\left(\begin{array}{c}
-H / \sqrt{g} \tag{4.9}\\
-K / \sqrt{g} \\
1
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{c}
H / \sqrt{g} \\
K / \sqrt{g} \\
1
\end{array}\right)
$$

where the terms H, K are defined as in (4.7). Furthermore $H, K \neq 0$ if $h, k \neq 0$ and condition (4.2) holds. ${ }^{5}$ Then, taking into account that the sphere \widetilde{S} has center O and radius $\rho=1$ we easily get the expressions (4.6).

Corollary 4.2 Suppose (4.2), (4.3) hold. Then

$$
\begin{equation*}
\operatorname{area}\left(\mathcal{E}_{\mathrm{P}}\left(O, U_{1}, U_{2}, U_{3}\right)\right)<\operatorname{area}\left(\mathcal{E}_{\mathrm{S}}\left(O, U_{1}, U_{2}, U_{3}\right)\right) \tag{4.10}
\end{equation*}
$$

Proof. From the expressions (3.12) and (4.6) we have $\left|O \Sigma_{-}\right|=\left|O \widetilde{\Sigma}_{-}\right|=1$. Thus it is enough to prove the inequality $\left|O \Sigma_{+}\right|^{2}<\left|O \widetilde{\Sigma}_{+}\right|^{2}$, that is

$$
\begin{equation*}
1+h^{2}+k^{2}<\frac{g+H^{2}+K^{2}}{g} \tag{4.11}
\end{equation*}
$$

l Since we know that $g>0$, (4.11) is equivalent to $\left(h^{2}+k^{2}\right) g<H^{2}+K^{2}$. Introducing the expressions (4.2) and (4.7), with elementary calculations the last inequality reduces to

$$
\begin{equation*}
0<h^{2} k^{2} \tag{4.12}
\end{equation*}
$$

which is clearly verified because we are assuming $h, k \neq 0$.
We can now give the expressions of a pair of conjugate semi-diameters of the secondary Pohlke's ellipse $\mathcal{E}_{\mathrm{S}}\left(O, P_{1}, P_{2}, P_{3}\right)$. Indeed, with U_{1}, U_{2}, U_{3} as in (4.3), we have:

Lemma 4.3 Suppose the segments $O P_{1}, O P_{2}, O P_{3}$ are non-parallel and condition (4.1)-(4.2) (or (1.8)-(1.9)) holds. Let $\Phi: \omega \rightarrow \omega$ be the affine transformation such that $O P_{1}=\Phi\left(O U_{1}\right)$, $O P_{2}=\Phi\left(O U_{2}\right)$. Then

$$
\begin{equation*}
\Phi\left(\mathcal{E}_{\mathrm{S}}\left(O, U_{1}, U_{2}, U_{3}\right)\right)=\mathcal{E}_{\mathrm{S}}\left(O, P_{1}, P_{2}, P_{3}\right) \tag{4.13}
\end{equation*}
$$

In particular the segments $O \widetilde{V}$ and $O \widetilde{W}$, with

$$
\begin{equation*}
\overrightarrow{O \widetilde{V}}= \pm \frac{K \overrightarrow{O P_{1}}-H \overrightarrow{O P_{2}}}{\sqrt{H^{2}+K^{2}}} \quad \text { and } \quad \overrightarrow{O W}= \pm \sqrt{\frac{g+H^{2}+K^{2}}{g\left(H^{2}+K^{2}\right)}}\left(H \overrightarrow{O P_{1}}+K \overrightarrow{O P_{2}}\right) \tag{4.14}
\end{equation*}
$$

are conjugate semi-diameters of the secondary Pohlke's ellipse $\mathcal{E}_{\mathrm{S}}\left(O, P_{1}, P_{2}, P_{3}\right)$.

Proof. In view of Pohlke's theorem and Theorem 1.2, there are exactly two distinct ellipses with center O and circumscribing $\mathcal{E}_{P_{1}, P_{2}}, \mathcal{E}_{P_{2}, P_{3}}, \mathcal{E}_{P_{3}, P_{1}}$. Namely, the Pohlke's ellipse $\mathcal{E}_{\mathrm{P}}\left(O, P_{1}, P_{2}, P_{3}\right)$ and the secondary Pohlke's ellipse $\mathcal{E}_{\mathrm{S}}\left(O, P_{1}, P_{2}, P_{3}\right)$.

Noting that $\Phi\left(O U_{3}\right)=O P_{3}$, we have

$$
\begin{equation*}
\Phi\left(\mathcal{E}_{U_{1}, U_{2}}\right)=\mathcal{E}_{P_{1}, P_{2}}, \quad \Phi\left(\mathcal{E}_{U_{2}, U_{3}}\right)=\mathcal{E}_{P_{2}, P_{3}}, \quad \Phi\left(\mathcal{E}_{U_{3}, U_{1}}\right)=\mathcal{E}_{P_{3}, P_{1}} . \tag{4.15}
\end{equation*}
$$

Since $\mathcal{E}_{\mathbf{S}}\left(O, U_{1}, U_{2}, U_{3}\right)$ circumscribes $\mathcal{E}_{U_{1}, U_{2}}, \mathcal{E}_{U_{2}, U_{3}}$ and $\mathcal{E}_{U_{3}, U_{1}}$, we deduce that

$$
\begin{equation*}
\Phi\left(\mathcal{E}_{\mathrm{S}}\left(O, U_{1}, U_{2}, U_{3}\right)\right) \quad \text { circumscribes } \quad \mathcal{E}_{P_{1}, P_{2}}, \mathcal{E}_{P_{2}, P_{3}}, \mathcal{E}_{P_{3}, P_{1}} \tag{4.16}
\end{equation*}
$$

By Lemma 3.9 we already know that $\Phi\left(\mathcal{E}_{\mathrm{P}}\left(O, U_{1}, U_{2}, U_{3}\right)\right)=\mathcal{E}_{\mathrm{P}}\left(O, P_{1}, P_{2}, P_{3}\right)$. Thus we must conclude that

$$
\begin{equation*}
\Phi\left(\mathcal{E}_{\mathbf{S}}\left(O, U_{1}, U_{2}, U_{3}\right)\right)=\mathcal{E}_{\mathbf{S}}\left(O, P_{1}, P_{2}, P_{3}\right), \tag{4.17}
\end{equation*}
$$

because $\mathcal{E}_{\mathbf{S}}\left(O, U_{1}, U_{2}, U_{3}\right) \neq \mathcal{E}_{\mathrm{P}}\left(O, U_{1}, U_{2}, U_{3}\right)$. Finally, taking account Lemma 4.1, we see that the segments $\Phi\left(O \widetilde{\Sigma}_{-}\right)$and $\Phi\left(O \widetilde{\Sigma}_{+}\right)$are conjugate semi-diameters of $\Phi\left(\mathcal{E}_{\mathbf{S}}\left(O, U_{1}, U_{2}, U_{3}\right)\right)$, hence the segments $O \widetilde{V}, O \widetilde{W}$ given by the expressions (4.14) are conjugate semi-diameters of the secondary Pohlke's ellipse $\mathcal{E}_{\mathrm{S}}\left(O, P_{1}, P_{2}, P_{3}\right)$.

From Corollary 4.2 and Lemma 4.3 it is now clear that:
Corollary 4.4 Suppose the segments $O P_{1}, O P_{2}, O P_{3}$ are non-parallel and condition (4.1)-(4.2) (i.e., (1.8)-(1.9)) holds. Then

$$
\begin{equation*}
\operatorname{area}\left(\mathcal{E}_{\mathrm{P}}\left(O, P_{1}, P_{2}, P_{3}\right)\right)<\operatorname{area}\left(\mathcal{E}_{\mathrm{S}}\left(O, P_{1}, P_{2}, P_{3}\right)\right) . \tag{4.18}
\end{equation*}
$$

More generally, if $\Psi: \omega \rightarrow \omega$ is any affine transformation of the plane ω, applying the previous results we can easily prove the following:

Theorem 4.5 Suppose the segments $O P_{1}, O P_{2}, O P_{3}$ are non-parallel and condition (1.8)-(1.9) holds. Let \mathcal{E}_{S} be the secondary Pohlke's ellipse of the triad $O P_{1}, O P_{2}, O P_{3}$. Then $\Psi\left(\mathcal{E}_{\mathrm{S}}\right)$ is the secondary Pohlke's ellipse of the triad of segments $\Psi\left(O P_{1}\right), \Psi\left(O P_{2}\right), \Psi\left(O P_{3}\right)$.

5 A determination of the secondary Pohlke's projection

Let $\widetilde{\Pi}: \mathbb{E}^{3} \rightarrow \omega$ be a secondary Pohlke's projection for $O P_{1}, O P_{2}, O P_{3}$, i.e., a parallel projection satisfying the conditions (1.4), (1.5), (1.6). In this final section we give explicit formulae for determining $\widetilde{\Pi}$ and the points R_{1}, R_{2}, R_{3}. To begin with, we note the following:

Claim 5.1 Let $\widetilde{\Pi}: \mathbb{E}^{3} \rightarrow \omega$ be a secondary Pohlke's projection for $O P_{1}, O P_{2}, O P_{3}$ and suppose the nonzero vector \vec{w} represents the direction of this projection. Then the following hold:
(a) $O R_{i}, O R_{i}^{\prime} \not \perp \vec{w}(1 \leq i \leq 3)$.
(b) If the vector \vec{w} is known, then the points $R_{1}, R_{2}, R_{3}, R_{1}^{\prime}, R_{2}^{\prime}, R_{3}^{\prime}$ can be recursively computed from any of them. For example, if R_{3} is given then we immediately have:

$$
\begin{equation*}
\overrightarrow{O R_{2}}=\overrightarrow{O P_{2}}-\frac{\overrightarrow{O R_{3}} \cdot \overrightarrow{O P_{2}}}{\overrightarrow{O R_{3}} \cdot \vec{w}} \vec{w}, \quad \overrightarrow{O R_{1}^{\prime}}=\overrightarrow{O P_{1}}-\frac{\overrightarrow{O R_{3}} \cdot \overrightarrow{O P_{1}}}{\overrightarrow{O R_{3}} \cdot \vec{w}} \vec{w} \tag{5.1}
\end{equation*}
$$

Proof. (a) It follows from condition (1.6). Indeed, if $O R_{i} \perp \vec{w}$, or if $O R_{i}^{\prime} \perp \vec{w}$, then $R_{i}=$ $R_{i}^{\prime} \in \widetilde{\pi}$ where $\widetilde{\pi}$ is the plane through O and perpendicular to \vec{w}. Thus (1.6) fails.
(b) By condition (1.4) we have $\widetilde{\Pi}\left(R_{2}\right)=P_{2}$, thus $\overrightarrow{O R_{2}}=\overrightarrow{O P_{2}}+t \vec{w}$ for some $t \in \mathbb{R}$. By (1.5) we also know that $O R_{2} \perp O R_{3}$. So, taking account that $\overrightarrow{O R_{3}} \cdot \vec{w} \neq 0$, we obtain

$$
\begin{equation*}
t=-\frac{\overrightarrow{O R_{3}} \cdot \overrightarrow{O P_{2}}}{\overrightarrow{O R_{3}} \cdot \vec{w}} \tag{5.2}
\end{equation*}
$$

This gives the first equality of (5.1). Noting that $\widetilde{\Pi}\left(R_{1}^{\prime}\right)=P_{1}$ and $O R_{3} \perp O R_{1}^{\prime}$, in the same way we can derive the second equality. To conclude it is enough to consider also the points R_{2}^{\prime} and R_{3}^{\prime}, because from condition (1.5) we get a cyclic relation of orthogonality:

$$
\begin{align*}
& O R_{1} \perp O R_{2}, O R_{2} \perp O R_{3}, O R_{3} \perp O R_{1}^{\prime} \\
& \quad O R_{1}^{\prime} \perp O R_{2}^{\prime}, O R_{2}^{\prime} \perp O R_{3}^{\prime}, O R_{3}^{\prime} \perp O R_{1} . \tag{5.3}
\end{align*}
$$

So we can start from any point of the set $\left\{R_{1}, R_{2}, R_{3}, R_{1}^{\prime}, R_{2}^{\prime}, R_{3}^{\prime}\right\}$.
Next, suppose that the segments $O P_{1}, O P_{2}, O P_{3}$ are non-parallel and that the condition (4.1)-(4.2) (i.e., (1.8)-(1.9)) is true. By Theorem 2.1 of $[6]$ there exist a sphere \widetilde{S} with center O, three point $R_{1}, R_{2}, R_{3} \in \widetilde{S}$ and a parallel projection $\widetilde{\Pi}: \mathbb{E}^{3} \rightarrow \omega$ such that the conditions (1.4), (1.5), (1.6) hold. To determine R_{1}, R_{2}, R_{3} and $\widetilde{\Pi}$, we begin by observing that setting

$$
\begin{equation*}
\overrightarrow{O X_{3}}=\frac{H}{\sqrt{g}} \overrightarrow{O P_{1}}+\frac{K}{\sqrt{g}} \overrightarrow{O P_{2}}, \tag{5.4}
\end{equation*}
$$

we have

$$
\begin{equation*}
\mathcal{E}_{\mathbb{S}}\left(O, P_{1}, P_{2}, P_{3}\right)=\mathcal{E}_{\mathrm{P}}\left(O, P_{1}, P_{2}, X_{3}\right) . \tag{5.5}
\end{equation*}
$$

Indeed, by Lemma 3.7 the segments $O \widehat{V}$ and $O \widehat{W}$, with

$$
\begin{gather*}
\overrightarrow{O V}= \pm \frac{\frac{K}{\sqrt{g}} \overrightarrow{O P_{1}}-\frac{H}{\sqrt{g}} \overrightarrow{O P_{2}}}{\sqrt{\frac{H^{2}}{g}+\frac{K^{2}}{g}}} \text { and } \tag{5.6}\\
\overrightarrow{O \widehat{W}}= \pm \sqrt{\frac{1+\frac{H^{2}}{g}+\frac{K^{2}}{g}}{\frac{H^{2}}{g}+\frac{K^{2}}{g}}\left(\frac{H}{\sqrt{g}} \overrightarrow{O P_{1}}+\frac{K}{\sqrt{g}} \overrightarrow{O P_{2}}\right),} \tag{5.7}
\end{gather*}
$$

are conjugate semi-diameters of the Pohlke's ellipse $\mathcal{E}_{\mathrm{P}}\left(O, P_{1}, P_{2}, X_{3}\right)$. Noting the expressions (4.14) of Lemma 4.3, it is clear $O \widehat{V}, O \widehat{W}$ coincide with the conjugate semi-diameters $O \widetilde{V}, O \widetilde{W}$ respectively of the secondary Pohlke's ellipse $\mathcal{E}_{\mathbf{S}}\left(O, P_{1}, P_{2}, P_{3}\right)$. Thus (5.5) holds.
Thanks to the considerations made in Remark 2.1, this implies that the secondary Pohlke's projection corresponding to the triad of segments $O P_{1}, O P_{2}, O P_{3}$ and the Pohlke's projection of the triad $O P_{1}, O P_{2}, O X_{3}$ are equal or they are symmetric with respect to ω.

More precisely, taking account the conditions (1.1) and (1.2), let us denote with \widehat{S} the sphere centered at O, with $\widehat{Q}_{1}, \widehat{Q}_{2}, \widehat{Q}_{3}$ the three points of \widehat{S} and with $\widehat{\Pi}: \mathbb{E}^{3} \rightarrow \omega$ the parallel projection such that:

$$
\begin{gather*}
\widehat{\Pi}\left(O \widehat{Q}_{1}\right)=O P_{1}, \quad \widehat{\Pi}\left(O \widehat{Q}_{2}\right)=O P_{2} \quad \text { and } \quad \widehat{\Pi}\left(O \widehat{Q}_{3}\right)=O X_{3} \tag{5.8}\\
O \widehat{Q}_{1} \perp O \widehat{Q}_{2}, \quad O \widehat{Q}_{2} \perp O \widehat{Q}_{3}, \quad O \widehat{Q}_{3} \perp O \widehat{Q}_{1} . \tag{5.9}
\end{gather*}
$$

Then, by Remark 2.1, it follows that

$$
\begin{equation*}
\widetilde{S}=\widehat{S} \text { and } \widetilde{\Pi} \sim \widehat{\Pi} . \tag{5.10}
\end{equation*}
$$

For our purposes $\widetilde{\Pi}$ and the symmetric projection $\overline{\widetilde{\Pi}}$ are equivalent, thus we can take

$$
\begin{equation*}
\widetilde{\Pi}=\widehat{\Pi} \tag{5.11}
\end{equation*}
$$

Then, to fulfill the conditions (1.4), (1.5) and (1.6), we only need to select appropriately the points $R_{i} \in \widehat{S}(1 \leq i \leq 3)$. More precisely,

$$
\begin{equation*}
R_{i}=\widehat{Q}_{i} \quad \text { or } \quad R_{i}=\widehat{Q}_{i}^{\prime} \quad(1 \leq i \leq 2)^{6} \tag{5.12}
\end{equation*}
$$

and then $R_{3} \in \widehat{S}$ such that

$$
\begin{equation*}
\widehat{\Pi}\left(R_{3}\right)=P_{3} . \tag{5.13}
\end{equation*}
$$

Thanks to the symmetry with respect to the plane $\widehat{\pi}$, it is indifferent to start with $R_{1}=\widehat{Q}_{1}$ or $R_{1}=\widehat{Q}_{1}{ }^{\prime}$. If we start with $R_{1}=\widehat{Q}_{1}$ then we must take

$$
\begin{equation*}
R_{2}=\widehat{Q}_{2} \tag{5.14}
\end{equation*}
$$

because $O \widehat{Q}_{1} \not \perp O \widehat{Q}_{2} .^{7}$ After selecting R_{2}, point R_{3} can be obtained by applying Claim 5.1. Namely, we must have

$$
\begin{equation*}
\overrightarrow{O R_{3}} \stackrel{\text { def }}{=} \overrightarrow{O P_{3}}-\frac{\overrightarrow{O R_{2}} \cdot \overrightarrow{O P_{3}}}{\overrightarrow{O R_{2}} \cdot \vec{w}} \vec{w} \tag{5.15}
\end{equation*}
$$

where \vec{w} is any nonzero vector representing the direction of the secondary Pohlke's projection $\widetilde{\Pi}$, i.e., the direction of the projection $\widehat{\Pi}$.

5.1 Reference tetrahedron and direction of projection

Summarizing up we give now a procedure for determining the points R_{1}, R_{2}, R_{3} and the direction of the secondary Pohlke's projection. As for Pohlke's projection, we use a system of coordinate axes x, y, z such that ω is the plane $z=0$ and (2.1) holds. We suppose that $O P_{1}, O P_{2}, O P_{3}$ are non-parallel and condition (4.1)-(4.2) holds. Then we consider the matrix

$$
\widehat{A}=\left(\begin{array}{ccc}
x_{1} & x_{2} & \widehat{x}_{3} \tag{5.16}\\
y_{1} & y_{2} & \widehat{y}_{3} \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{c}
\widehat{A}_{1} \\
\widehat{A}_{2} \\
0
\end{array}\right)
$$

where

$$
\begin{equation*}
\widehat{x}_{3}=\frac{H}{\sqrt{g}} x_{1}+\frac{K}{\sqrt{g}} x_{2}, \quad \widehat{y}_{3}=\frac{H}{\sqrt{g}} y_{1}+\frac{K}{\sqrt{g}} y_{2} \tag{5.17}
\end{equation*}
$$

and $H=h\left(h^{2}-k^{2}-1\right), K=k\left(h^{2}-k^{2}+1\right)$ are the terms introduced in (4.7).

[^4]Having defined the matrix \widehat{A}, we continue by following the formulae (3.6), (3.10), (3.21), (3.22) of [4]. We define the quantities:

$$
\begin{gather*}
\hat{\gamma}=\arccos \left(\frac{\widehat{A}_{1} \cdot \widehat{A}_{2}}{\left\|\widehat{A}_{1}\right\|\left\|\widehat{A}_{2}\right\|}\right), \quad \hat{\lambda}=\frac{\left\|\widehat{A}_{1}\right\|}{\left\|\widehat{A}_{2}\right\|} \tag{5.18}\\
\hat{\eta}=\frac{\hat{\lambda}^{2}+1+\sqrt{\left(\hat{\lambda}^{2}+1\right)^{2}-4 \hat{\lambda}^{2} \sin ^{2} \hat{\gamma}}}{2 \hat{\lambda}^{2} \sin ^{2} \hat{\gamma}}, \tag{5.19}\\
\hat{\nu}= \pm \hat{\rho} \quad \text { with } \quad \hat{\rho}=\frac{\left\|\widehat{A}_{1}\right\|}{\hat{\lambda} \sqrt{\hat{\eta}}}=\frac{\left\|\widehat{A}_{2}\right\|}{\sqrt{\hat{\eta}}}, \tag{5.20}
\end{gather*}
$$

and, finally,

$$
\begin{equation*}
(\hat{\alpha}, \hat{\beta})= \pm\left(\sqrt{\hat{\eta} \hat{\lambda}^{2}-1}, \operatorname{sgn}(\cos \hat{\gamma}) \sqrt{\hat{\eta}-1}\right) \tag{5.21}
\end{equation*}
$$

where $t \mapsto \operatorname{sgn}(t)$ is the "signum" function introduced in (2.6).
Then, by the results of $\left[4\right.$, Section 4], the coordinates of the points $\widehat{Q}_{1}, \widehat{Q}_{2}, \widehat{Q}_{3}$ satisfying (5.8), (5.9) are the columns $\widehat{B}^{1}, \widehat{B}^{2}, \widehat{B}^{3}$ respectively of the matrix

$$
\widehat{B}=\frac{1}{1+\hat{\alpha}^{2}+\hat{\beta}^{2}}\left(\begin{array}{ccc}
1+\hat{\beta}^{2} & -\hat{\alpha} \hat{\beta} & -\hat{\alpha} \tag{5.22}\\
-\hat{\alpha} \hat{\beta} & 1+\hat{\alpha}^{2} & -\hat{\beta} \\
\hat{\alpha} & \hat{\beta} & 1
\end{array}\right)\left(\begin{array}{ccc}
x_{1} & x_{2} & \widehat{x}_{3} \\
y_{1} & y_{2} & \widehat{y}_{3} \\
\frac{x_{2} \widehat{y}_{3}-y_{2} \widehat{x}_{3}}{\hat{\nu}} & \frac{y_{1} \widehat{x}_{3}-x_{1} \widehat{y_{3}}}{\hat{\nu}} & \frac{x_{1} y_{2}-y_{1} x_{2}}{\hat{\nu}}
\end{array}\right) .
$$

The direction of the projection $\widehat{\Pi}: \mathbb{E}^{3} \rightarrow \omega$ is determined by the vector

$$
\vec{w}=\left(\begin{array}{c}
-\hat{\alpha} \tag{5.23}\\
-\hat{\beta} \\
1
\end{array}\right) .
$$

Recalling (5.14) and (5.15), it is now sufficient to modify the third column of $\widehat{B}=\left(\widehat{B}^{1}, \widehat{B}^{2}, \widehat{B}^{3}\right)$. More precisely, we define the matrix $\widetilde{B}=\left(\widetilde{B}^{1}, \widetilde{B}^{2}, \widetilde{B}^{3}\right)$ as

$$
\begin{equation*}
\widetilde{B}^{1}=\widehat{B}^{1}, \quad \widetilde{B}^{2}=\widehat{B}^{2}, \quad \widetilde{B}^{3}=P_{3}-\frac{\widehat{B}^{2} \cdot P_{3}}{\widehat{B}^{2} \cdot \vec{w}} \vec{w} . \tag{5.24}
\end{equation*}
$$

The coordinates of the points R_{1}, R_{2}, R_{3} are then the columns $\widetilde{B}^{1}, \widetilde{B}^{2}, \widetilde{B}^{3}$ respectively and the direction of the secondary Pohlke's projection $\widetilde{\Pi}$ is represented by \vec{w}. Thus, we have

$$
\widetilde{\Pi}\left(\begin{array}{l}
x \tag{5.25}\\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x+\hat{\alpha} z \\
y+\hat{\beta} z \\
0
\end{array}\right) .
$$

References

[1] Emch, A., Proof of Pohlke's Theorem and Its Generalizations by Affinity, Amer. J. Math. 40(4) (1918), pp. 366-374.
[2] Lefkaditis, G.E., Toulias, T.L. and Markatis, S., The four ellipses problem, Int. J. Geom. 5(2) (2016), pp. 77-92.
[3] Lefkaditis, G.E., Toulias, T.L. and Markatis, S., On the Circumscribing Ellipse of Three Concentric Ellipses, Forum Geom. 17 (2017), pp. 527-547.
[4] Manfrin, R., A proof of Pohlke's theorem with an analytic determination of the reference trihedron, J. Geom. Graphics 22 (2) (2018), pp. 195-205.
[5] Manfrin, R., Addendum to Pohlke's theorem, a proof of Pohlke-Schwarz's theorem, J. Geom. Graphics 23(1) (2019), pp. 41-44.
[6] Manfrin, R., A note on a secondary Pohlke's projection, to appear Int. J. Geom. 11(1) (2022), pp. 33-53.
[7] Pohlke, K.W., Lehrbuch der Darstellenden Geometrie, Part I, Berlin, 1860.
[8] Toulias, T.L. and Lefkaditis, G.E., Parallel Projected Sphere on a Plane: a New PlaneGeometric Investigation, Int. Electron. J. Geom. 10(1) (2017), pp. 58-80.

Dipartimento di Culture del Progetto
Università IUAV di Venezia
Dorsoduro 2196, Cotonificio Veneziano
30123 Venezia, ITALY
E-mail address : manfrin@iuav.it

[^0]: ${ }^{1}$ If two of the segments $O P_{1}, O P_{2}, O P_{3}$ are parallel (in particular if one of them vanishes) we can still say that \mathcal{E}_{P} circumscribes $\mathcal{E}_{P_{1}, P_{2}}, \mathcal{E}_{P_{2}, P_{3}}$ and $\mathcal{E}_{P_{3}, P_{1}}$ but we need to introduce degenerate ellipses as in [1, pp. 372-373]. For instance, if $O P_{1} \| O P_{2}$ then we set $\mathcal{E}_{P_{1}, P_{2}}=M N$, where $M N$ is the segment parallel to $O P_{1}, O P_{2}$ such that $O=(M+N) / 2$ and $|O N|^{2}=\left|O P_{1}\right|^{2}+\left|O P_{2}\right|^{2}$. In this case we say that \mathcal{E}_{P} circumscribes $\mathcal{E}_{P_{1}, P_{2}}$ if $M, N \in \mathcal{E}_{\mathrm{P}}$. We also say that $\mathcal{E}_{P_{1}, P_{2}}$ is tangent to \mathcal{E}_{P} at M, N. See the Definitions 3.1, 3.3 of [6].

[^1]: ${ }^{2}$ We note that $\eta, \lambda^{2} \eta \geq 1$. Indeed from (2.4) we easily have:

 $$
 \eta(\lambda, \gamma) \geq \eta\left(\gamma, \frac{\pi}{2}\right)=\frac{\lambda^{2}+1+\left|\lambda^{2}-1\right|}{2 \lambda^{2}}=\left\{\begin{array}{lll}
 1 / \lambda^{2} & \text { if } \quad 0<\lambda \leq 1 \\
 1 & \text { if } \quad \lambda \geq 1
 \end{array}\right.
 $$

[^2]: ${ }^{3}$ Here, with a slight abuse of notation, we use A_{1}, A_{2} to indicate two points with the same coordinates of the rows A_{1}, A_{2} of the matrix A defined in (2.2).

[^3]: ${ }^{4}$ Condition (4.1)-(4.2) is clearly equivalent to (1.8)-(1.9). But (4.1)-(4.2) allows us to obtain slight simpler expressions.
 ${ }^{5}$ Note that condition $(4.2) \Rightarrow h^{2}-k^{2} \neq \pm 1$. In fact, since $g(h, k)=\left(h^{2}-k^{2}\right)^{2}-2 h^{2}-2 k^{2}+1$, we get

 $$
 h^{2}-k^{2}= \pm 1 \quad \Rightarrow \quad g(h, k)=2\left(1-h^{2}-k^{2}\right)=\left\{\begin{array}{lll}
 -4 h^{2} & \text { if } & h^{2}-k^{2}=-1 \\
 -4 k^{2} & \text { if } & h^{2}-k^{2}=1
 \end{array}\right.
 $$

[^4]: ${ }^{6}$ Because $\widehat{\Pi}\left(\widehat{Q}_{i}\right)=\widehat{\Pi}\left(\widehat{Q}_{i}{ }^{\prime}\right)=P_{i}$, for $1 \leq i \leq 2$. According to the previous notation, $\widehat{Q}_{i}{ }^{\prime}$ is symmetric to \widehat{Q}_{i} with respect to the plane $\widehat{\pi}$ through O and perpendicular to the direction of the projection $\widehat{\Pi}$.
 ${ }^{7}$ Indeed, $O \widehat{Q}_{1} \perp O \widehat{Q}_{2} \wedge O \widehat{Q}_{1} \perp O \widehat{Q}_{2}{ }^{\prime} \Rightarrow \widehat{Q}_{1} \in \widehat{\pi} \vee \widehat{Q}_{2} \in \widehat{\pi}$. But this cannot happen because, by (5.10), we already know that $\widehat{\Pi}=\widetilde{\Pi}$ is as secondary Pohlke's projection for $O P_{1}, O P_{2}, O P_{3}$.

