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Abstract

By elementary arguments of linear algebra and vector algebra we give here a proof of
Pohlke’s fundamental theorem of oblique axonometry. We also give simple explicit formulae
for the reference trihedrons (Pohlke matrices) and the corresponding directions of projection
onto the drawing plane.
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1 Introduction

The famous Pohlke’s fundamental theorem of oblique axonometry asserts that:

three arbitrary straight line segments OP1, OP2, OP3 in a plane, originating from a point O
and which are not contained in a line, can be considered as the parallel projection of three edges
OQ1, OQ2, OQ3 of a cube.

Or, with the words of H. Steinhaus ([11], p. 170),

one can draw any three (not all parallel) segments from one point, complete the figure with
parallel segments, and consider it as a (generally oblique) projection of a cube.

K.W. Pohlke formulated this theorem in 1853 and published it in 1860, without demonstra-
tion, in the first part of his textbook on descriptive geometry [9]. The first elementary rigorous
proof was given by H.A. Schwarz [10] in 1864, at that time a student of Pohlke.

Subsequently, as remarked by D.J. Struik ([12], p. 240), several proofs have been given,
synthetic and analytic, none of which is simple because they also give the method by which one
can construct the direction of projection. See among the others [3, 4, 7, 1, 6, 8, 2].

Here we prove Pohlke’s theorem by reducing it to a particular case in which the direction of
projection coincides with that of one of the edges of the cube. To achieve this simplification we
restate Pohlke’s theorem as a theorem of linear algebra and then we make a simple observation
based on the fact that for a matrix row-rank and column-rank are equal. More precisely, if we
introduce a cartesian system of coordinates such that

O =

 0
0
0

 and Pi =

 xi
yi
0

 (1 ≤ i ≤ 3) (1.1)

are points of the plane {z = 0} then Pohlke’s theorem can be reformulated as follows:
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Theorem 1.1 If the matrix

A =

 x1 x2 x3
y1 y2 y3
0 0 0

 = (A1, A2, A3) (1.2)

has rank 2, then there exist a matrix B with orthogonal columns of equal norm,

B =

 x′1 x′2 x′3
y′1 y′2 y′3
z′1 z′2 z′3

 = (B1, B2, B3) , (1.3)

and a parallel projection Π onto the plane {z = 0} such that Π(Bi) = Ai (1 ≤ i ≤ 3 ).

Now, see Lemma 2.1, the columns of A can be obtained by a parallel projection of the
columns of the matrix B if and only if the rows of A can be obtained by a parallel projection
of the rows of the matrix B . But, since the third row of A has zero entries, the direction of
this last projection is the same of the third row of B.

As a by-product, we finally obtain explicit formulae for the reference trihedron and the
direction of projection. For instance, for B, Π (which are not unique) we may take:

B =
1

1 + α2 + β2

 1 + β2 −αβ −α
−αβ 1 + α2 −β
α β 1




x1 x2 x3

y1 y2 y3
x2y3−y2x3

ϱ
y1x3−x1y3

ϱ
x1y2−y1x2

ϱ

 (1.4)

and

Π

 x
y
z

 =

 x+ αz
y + βz

0

 , (1.5)

with α, β, ϱ defined by (3.6), (3.10), (3.21), (3.22) below from the rows A1, A2 of A. See also
(4.6), (4.8) and the simple examples at the end of Chapter 4.

The fact that the proof becomes easier if one has some information about the direction of
projection is particularly evident when Π is, a priori, the orthogonal projection onto the plane
{z = 0} . More precisely, denoting with A1, A2, A3 the rows of the matrix A given by (1.2), we
can reformulate the Gauss’ theorem of orthogonal axonometry as follows:

Proposition 1.2 A1, A2 are nonzero orthogonal rows of equal norm, that is

∥A1∥ = ∥A2∥ ̸= 0 with A1⊥A2 , (1.6)

if and only if there exists a matrix B with nonzero orthogonal columns of equal norm such that

Π⊥(B
i) = Ai (1 ≤ i ≤ 3) (1.7)

where Π⊥ : R3 → {z = 0} is the orthogonal projection.
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Proof: In fact, assuming (1.6) and setting ρ = ∥A1∥ = ∥A2∥ , we may define the row vector
B3 = (z′1, z

′
2, z

′
3) as

B3 =
1

ρ
A1 ∧A2 or B3 = −1

ρ
A1 ∧A2 . (1.8)

Namely, we choose B3 equal to (z1, z2, z3) or (−z1,−z2,−z3) where

z1 =
1

ρ

∣∣∣∣ x2 x3
y2 y3

∣∣∣∣ , z2 = −1

ρ

∣∣∣∣ x1 x3
y1 y3

∣∣∣∣ , z3 =
1

ρ

∣∣∣∣ x1 x2
y1 y2

∣∣∣∣ . (1.9)

Then, B3⊥A1, A2 and ∥B3∥ = ρ . Hence, setting B1 = A1, B2 = A2, the matrix

B =

 B1

B2

B3

 =

 x1 x2 x3
y1 y2 y3
z′1 z′2 z′3

 (1.10)

has orthogonal rows of norm ρ . This means that B is a multiple of an orthogonal matrix and
thus it follows that the columns Bi (1 ≤ i ≤ 3) are orthogonal and of norm ρ . Finally, if
Π⊥ : R3 → {z = 0} is the orthogonal projection onto the plane {z = 0} , we clearly have (1.7).

Conversely, if there exists a matrix B = (B1, B2, B3) such that (1.7) holds, than B1 = A1

and B2 = A2. If, in addition, the columns B1, B2, B3 are nonzero, orthogonal and of equal
norm then B is a multiple of an orthogonal matrix. Thus, the rows A1 and A2 are nonzero,
orthogonal and of equal norm. 2

Remark 1.3 In the proof of Prop. 1.2 the row B3 is necessarily given by one of the expressions
of (1.8), since (1.7) implies that B1 = A1, B2 = A2. Hence, there are exactly two distinct
possibilities for B : one with B3 =

1
ρ A1 ∧A2 and the other with B3 = −1

ρ A1 ∧A2 . 2

We may say that in case of orthogonal projection “Pohlke’s problem” (namely, that of finding
a matrix B and a projection Π with the required properties) has exactly two distinct solutions.

More generally, to consider the question of the multiplicity of solutions of “Pohlke’s problem”,
we give the following definition:

Definition 1.4 (Pohlke matrix) Let A be a matrix of rank 2 as in (1.2). We say that a
matrix B is a “Pohlke matrix” for A if B has orthogonal columns of equal norm and there
exists a parallel projection Π : R3 → {z = 0} such that Π(Bi) = Ai , 1 ≤ i ≤ 3.

Besides, we say that two Pohlke matrices B, B̃ are “conjugate” if they correspond to the
same parallel projection Π : R3 → {z = 0} , that is Π(Bi) = Π(B̃i) = Ai , 1 ≤ i ≤ 3.

Then, we have:

Corollary 1.5 Under the assumption of Theorem1.1, in case of oblique projection (i.e., non-
orthogonal projection) there are exactly two couples of conjugate Pohlke matrices that correspond
to two distinct, oblique, directions of projection.

See the explicit formulae (4.6) and (4.8) below.
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2 Some facts of linear algebra

We give here two simple results of linear algebra. The first is the key lemma that we need in the
proof of Pohlke’s theorem. The second one is a standard fact on orthogonal transition matrices;
see [5]. We need it to compute the direction of the projection Π : R3 → {z = 0} and the
mutually orthogonal column vectors Bi such that Π(Bi) = Ai .

Let A be the real 3× 3 matrix

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 +

 A1

A2

A3

 + (A1, A2, A3) (2.1)

where Ai, A
i are, respectively, row and column vectors of A :

Ai = (ai1, ai2, ai3) , Ai =

 a1i
a2i
a3i

 (1 ≤ i ≤ 3) . (2.2)

We indicate with VA and VA the row and column spaces of A, namely

VA = span
{
A1, A2, A3

}
, VA = span

{
A1, A2, A3

}
. (2.3)

If rank(A) = 2 , then VA and VA are 2-dimensional subspaces (i.e., planes throw the
origin) of R3. Given a column vector U , U ∦ VA , we may consider the parallel projection
ΠU : R3 → VA , in the direction of U , by setting

ΠU (V ) = VA ∩ {V + t U : t ∈ R} (2.4)

for any column vector V ∈ R3 . Since VA is a plane throw the origin, ΠU is a linear map.
In the same way we can define the parallel projection ΠW : R3 → VA in the direction of a

given row vector W , if W ∦ VA .
When the direction of projection is not specified, we write Π∗ (Π∗ ) for column (row)

projections onto VA (VA ).

Lemma 2.1 Let A and B be 3× 3 matrices such that rank(A) = 2 and rank(B) = 3 .
Then the rows of A can be obtained by a parallel projection Π∗ : R

3 → VA of the rows of the
matrix B if and only if the columns of A can be obtained by a parallel projection Π∗ : R3 → VA

of the columns of the matrix B.

Proof: Let Π∗ be a parallel projection onto VA such that

Π∗(Bi) = Ai for 1 ≤ i ≤ 3 . (2.5)

Then we have

row-rank (B −A) = row-rank

 B1 −A1

B2 −A2

B3 −A3

 = 1, (2.6)

because the row vectors Bi − Ai are parallel to the direction of the projection Π∗ . Since
row-rank and column-rank of a matrix are equal ([5], p. 81) this implies that

column-rank (B −A) = column-rank (B1 −A1, B2 −A2, B3 −A3) = 1. (2.7)
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Thus there exists a column vector U ∈ R3 such that

(Bi −Ai) ∥ U for 1 ≤ i ≤ 3 . (2.8)

Moreover, observe that

U ̸∈ VA ( that is U ∦ VA) (2.9)

because rank(B) = 3, while rank(A) = 2 .

Hence, for all column vector V ∈ R3 the line {V + Ut : t ∈ R} has one and only one
intersection with the plane VA . This permits us to define the projection Π∗ : R3 → VA in the
direction of the column vector U by setting

Π∗(V ) = VA ∩ {V + Ut : t ∈ R} for V ∈ R3. (2.10)

Since we clearly have Π∗(Bi) = Ai ( 1 ≤ i ≤ 3), this proves the first part of the lemma. The
converse can be proved similarly. 2

Remark 2.2 The common value of row-rank and column-rank is obvious in the case of the
previous proof. In fact, it is evident that if Bi − Ai = λiW for 1 ≤ i ≤ 3 (W a given row

vector, λi ∈ R) then (Bi −Ai) ∥

 λ1

λ2

λ3

 (1 ≤ i ≤ 3) . Thus we can choose U =

 λ1

λ2

λ3

. 2

Having proved Lemma 2.1, and taking into account that if B is a square matrix then

B has nonzero orthogonal columns of equal norm ⇔ B is a nonzero multiple of an orthog-
onal matrix ⇔ B has nonzero orthogonal rows of equal norm,

we can immediately restate Definition 1.4 in the following equivalent form:

Definition 2.3 Let A be a 3×3 matrix of rank 2 . We say that a 3×3 matrix B is a “Pohlke
matrix” for A if B is a multiple of an orthogonal matrix and there exist parallel projections
Π∗ : R

3 → VA and Π∗ : R → VA such that Π∗(Bi) = Ai and Π∗(Bi) = Ai for 1 ≤ i ≤ 3.

Next, we recall a standard result concerning the existence of orthogonal transition matri-
ces for two given bases of R3 . We state Lemma 2.5 below in terms of row vectors but, by
transposition, a similar result holds for column vectors.

Definition 2.4 We denote by Ei , 1 ≤ i ≤ 3 , the standard base of row vectors:

E1 = (1, 0, 0) , E2 = (0, 1, 0) , E3 = (0, 0, 1) . (2.11)

Lemma 2.5 Let {A′
1, A

′
2, A

′
3} and {Ã1, Ã2, Ã3} be two sets of linearly independent row vectors

(i.e., two bases of R3) such that

A′
i ·A′

j = Ãi · Ãj (1 ≤ i, j ≤ 3) . (2.12)

Then, there exists a unique orthogonal transition matrix T such that A′
i = Ãi T (1 ≤ i ≤ 3).
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Proof: Uniqueness is quite obvious. To determine T , let us define the nonsingular matrices

G =

 A′
1

A′
2

A′
3

 , G̃ =

 Ã1

Ã2

Ã3

 . (2.13)

We have
Ei G = A′

i , Ei G̃ = Ãi 1 ≤ i ≤ 3 . (2.14)

Then, setting T = G̃−1 G , it is clear that

Ãi T = Ãi G̃−1 G = Ei G = A′
i . (2.15)

On the other hand, using (2.12) and the linearity of the map X 7−→ X T , it is easy to see
that for all row vectors X ∈ R3 one has ∥X T ∥ = ∥X∥ .

In fact, since {Ã1, Ã2, Ã3} is a base of R3, there exist unique scalars λ1, λ2, λ3 ∈ R such
that X = λ1Ã1 + λ2Ã2 + λ3Ã3 . Then, by (2.12), we have

∥XT ∥2 = ∥
∑

λiA
′
i∥2 =

∑
λiλj(A

′
i ·A′

j)

=
∑

λiλj(Ãi · Ãj) = ∥
∑

λiÃi∥2 = ∥X∥2,
(2.16)

and it is well known that this is equivalent to the orthogonality of the matrix T . See [5] . 2

3 Proof of Pohlke’s theorem

We prove here Pohlke’s theorem as stated in Theorem1.1. With the notations of the previous
sections, in the following we suppose

A =

 x1 x2 x3
y1 y2 y3
0 0 0

 with rank(A) = 2 , (3.1)

i.e., the rows A1 and A2 are linearly independent and VA is the plane {z = 0} . By Lemma
2.1, it is sufficient to find a matrix

B =

 x′1 x′2 x′3
y′1 y′2 y′3
z′1 z′2 z′3

 =

 B1

B2

B3

 , (3.2)

with orthogonal rows B1, B2, B3 of equal norm, and a parallel projection ΠW : R3 → VA ,
with W ̸∈ VA , such that ΠW (Bi) = Ai for 1 ≤ i ≤ 3 . This means that

Ai = Bi + λiW (1 ≤ i ≤ 3) (3.3)

where λi are suitable real coefficients. Since A3 = (0, 0, 0), it is clear that the projection ΠW

must be parallel to B3 . Hence, we may assume W = B3 . Then, it is enough to prove that
there exist B1, B2, B3 orthogonal and of equal norm such that{

A1 = B1 + λ1B3

A2 = B2 + λ2B3

(3.4)
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for suitable scalars λ1, λ2 ∈ R. To this aim we first consider the following:

Auxiliary problem: Let {E1, E2, E3} be the standard base of row vectors of Definition 2.4,
and let γ ∈ (0, π) , λ > 0 be given parameters. We look for α, β ∈ R such that:

∥E1 + αE3∥
∥E2 + βE3∥

= λ ,

(E1 + αE3) · (E2 + βE3)

∥E1 + αE3∥ ∥E2 + βE3∥
= cos γ .

(3.5)

Before proving the solvability of (3.5) it is worthwhile to define the quantity:

Definition 3.1 For (γ, λ) ∈ (0, π)× (0,+∞) we set

η = η(λ, γ) + λ2 + 1 +
√

(λ2 + 1)2 − 4λ2 sin2γ

2λ2 sin2γ
. (3.6)

Then, for (γ, λ) ∈ (0, π)× (0,+∞) , we have:

η(λ, γ) ≥ η
(
λ,

π

2

)
=

λ2 + 1 + |λ2 − 1|
2λ2

=

{
1/λ2 if 0 < λ ≤ 1

1 if λ ≥ 1
(3.7)

with strict inequality if γ ̸= π
2 . In particular, η(γ, λ) satisfies the following:

(i) η ≥ 1 , ηλ2 ≥ 1 for all (γ, λ) ∈ (0, π)× (0,+∞) ,

(ii) η = 1 ⇔ (γ, λ) ∈
{π

2

}
× [1,+∞) ,

(iii) ηλ2 = 1 ⇔ (γ, λ) ∈
{π

2

}
× (0, 1] .

(3.8)

Finally, for simplicity of writing, we also introduce a “signum” function:

sgn(t) +
{

1 if t ≥ 0

−1 if t < 0
(3.9)

Lemma 3.2 Assume that (γ, λ) ∈ (0, π)× (0,+∞). Then the real solutions of (3.5) are

(α, β) = ±
(√

η λ2 − 1 , sgn(cos γ)
√

η − 1
)
. (3.10)

Thus, for (γ, λ) ̸= (π2 , 1) system (3.5) has two real, distinct solutions ; for (γ, λ) = (π2 , 1) the
only solution is (α, β) = (0, 0).

Proof: It is clear that system (3.5) is equivalent to the following
1 + α2 = λ2(1 + β2)

αβ =
√
1 + α2

√
1 + β2 cos γ .

(3.11)
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Multiplying the first equation of (3.11) by (1 + β2) one easily sees that

α2β2 = λ2(1 + β2)2 − 1− α2 − β2

= λ2(1 + β2)2 − (λ2 + 1)(1 + β2) + 1 . (3.12)

On the other hand, squaring the other equation of (3.11), we have

α2β2 = (1 + α2) (1 + β2) cos2γ

= λ2 (1 + β2)2 cos2γ . (3.13)

Hence, from (3.12) and (3.13), we deduce that 1 + β2 satisfies the second order equation

sin2γ λ2(1 + β2)2 − (λ2 + 1)(1 + β2) + 1 = 0 . (3.14)

Solving (3.14), we obtain

1 + β2 =
λ2 + 1±

√
(λ2 + 1)2 − 4λ2 sin2γ

2λ2 sin2γ
. (3.15)

But, for all γ ∈ (0, π), λ > 0 , we have

λ2 + 1−
√

(λ2 + 1)2 − 4λ2 sin2γ

2λ2 sin2γ
=

2

λ2 + 1 +
√

(λ2 + 1)2 − 4λ2 sin2γ

≤ 2

λ2 + 1 + |λ2 − 1|
≤ 1 , (3.16)

with equality only when (γ, λ) ∈
{
π
2

}
× (0, 1] . Thus, taking into account (i), (iii) of (3.8), for

(γ, λ) ̸∈ {π
2 } × (0, 1] we have

1 + β2 =
λ2 + 1 +

√
(λ2 + 1)2 − 4λ2 sin2γ

2λ2 sin2γ
= η ≥ 1 , (3.17)

1 + α2 =
λ2 + 1 +

√
(λ2 + 1)2 − 4λ2 sin2γ

2 sin2γ
= ηλ2 > 1 . (3.18)

By the second equation of (3.11) αβ > 0 if γ ∈ (0, π2 ) , while αβ < 0 if γ ∈ (π2 , π); furthermore,
by (ii), (iii) of (3.8) and (3.17), (3.18), we have α2 = ηλ2 − 1 > 0 , β2 = η − 1 = 0 for γ = π

2 ,
λ > 1 . It follows that for (γ, λ) ̸∈ {π

2 } × (0, 1] there are exactly two distinct solutions:

(α, β) =



±
(√

ηλ2 − 1 ,
√
η − 1

)
if 0 < γ < π

2 , λ > 0

±
(√

ηλ2 − 1 ,
√
η − 1

)
if γ = π

2 , λ > 1

±
(√

ηλ2 − 1 , −
√
η − 1

)
if π

2 < γ < π , λ > 0

(3.19)

On the other hand, for (γ, λ) ∈ {π
2 } × (0, 1] it is immediate to verify that (3.11) is satisfied if

and only if α = 0 and β2 = 1
λ2 − 1 . Thus, by (iii) of (3.8), we can write again

(α, β) = ±(
√

ηλ2 − 1 ,
√

η − 1 ) , (3.20)
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and (by (ii) of (3.8)) we find two distinct solutions unless (γ, λ) = (π2 , 1) . It is now clear that
(3.19), (3.20) can be summarized by formula (3.10) for all (γ, λ) ∈ (0, π)× (0,+∞) .

To conclude, it remains to verify that (3.10) gives, effectively, solutions of both equations
of (3.5). The first one, 1 + α2 = λ2(1 + β2) , is obviously satisfied by (3.10). The second one,
αβ =

√
1 + α2

√
1 + β2 cos γ , is certainly satisfied for γ = π

2 , because α = 0 or β = 0 .
For γ ̸= π

2 the sign of “αβ” is the same of “cos γ”; thus, it enough to show the α2β2 =
(1+α2)(1 + β2) cos2 γ , which is equivalent to (1 +α2)(1 + β2) sin2 γ = (1+α2) + (1 + β2)− 1 .
This can be easily verified by substituting the expressions (3.17), (3.18) for 1 + β2, 1 + α2 . 2

Now, to prove the solvability of (3.4), we apply Lemma 2.5 and Lemma 3.2. To begin with,
we set the values of the parameters γ ∈ (0, π), λ > 0 of system (3.5):

γ + arccos

(
A1 ·A2

∥A1∥∥A2∥

)
, λ + ∥A1∥

∥A2∥
. (3.21)

Applying Lemma 3.2, we choose
(α, β)

a real solution of system (3.5), and then we introduce the “scale” factor ϱ ∈ (0,+∞) :

Definition 3.3

ϱ + ∥A1∥√
1 + α2

=
∥A1∥
λ
√
η

=
∥A2∥√

η
=

∥A2∥√
1 + β2

. (3.22)

Next, we look for an isometry which transforms the couple of vectors ϱ(E1+αE3), ϱ(E2+βE3)
into the couple A1, A2 . To this aim, it is clear that there are only two possibilities: we consider
the sets of linearly independent row vectors {A′

1, A
′
2, A

′
3} and {Ã1, Ã2, Ã3} defined by

A′
1 = A1

A′
2 = A2

A′
3 = ± ϱ−1A1 ∧A2

and

Ã1 = ϱ(E1 + αE3) = (ϱ, 0, ϱα)

Ã2 = ϱ(E2 + βE3) = (0, ϱ, ϱβ)

Ã3 = ϱ−1Ã1 ∧ Ã2 = (−ϱα,−ϱβ, ϱ)

(3.23)

where for A′
3 we may take, indifferently, the sign “+” or “− ”. From (3.21), (3.22) we have

A′
i ·A′

j = Ãi · Ãj (1 ≤ i, j ≤ 3) . (3.24)

Hence, by Lemma 2.5, there exists a unique orthogonal, transition matrix T such that

A′
i = Ãi T (1 ≤ i ≤ 3) . (3.25)

In particular, since T is orthogonal, setting

Bi + ϱEi T (1 ≤ i ≤ 3) (3.26)

we have ∥Bi∥ = ϱ and Bi⊥Bj for i ̸= j . Besides (3.23), (3.25) give

A1 = A′
1 = ϱE1 T + α(ϱE3 T ) = B1 + αB3

A2 = A′
2 = ϱE2 T + β(ϱE3 T ) = B2 + βB3 .

(3.27)

Thus, we have proved that (3.4) is solvable.
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4 Determination of Pohlke matrices

It is clear that the Pohlke matrix B , with the rows B1, B2, B3 defined in (3.26), coincides with
ϱ T where T is the transition matrix given by Lemma 2.5. Namely, we have

B = ϱ T = ϱ G̃−1G , (4.1)

where G, G̃ are 3× 3 matrices defined as in (2.13). More precisely, we have:

G̃ = ϱ

 1 0 α
0 1 β
−α −β 1

 , (4.2)

G̃−1 =
1

ϱ(1 + α2 + β2)

 1 + β2 −αβ −α
−αβ 1 + α2 −β
α β 1

 (4.3)

where (α, β) is any real solution of (3.5). For G there are two possibilities:

G =

 x1 x2 x3
y1 y2 y3

x2y3−y2x3

ϱ
y1x3−x1y3

ϱ
x1y2−y1x2

ϱ

 (4.4)

or

G =

 x1 x2 x3
y1 y2 y3

x2y3−y2x3

−ϱ
y1x3−x1y3

−ϱ
x1y2−y1x2

−ϱ

 . (4.5)

In conclusion, we finally obtain

B =
1

1 + α2 + β2

 1 + β2 −αβ −α
−αβ 1 + α2 −β
α β 1




x1 x2 x3

y1 y2 y3
x2y3−y2x3

±ϱ
y1x3−x1y3

±ϱ
x1y2−y1x2

±ϱ

 (4.6)

where (α, β) is any solution of (3.5).

Remark 4.1 Note that ∥B1∥ = ∥B2∥ = ∥B3∥ = ϱ , because G̃−1G is an orthogonal matrix. 2

The direction of projection.

It is now easy to find the direction of the projection corresponding to the two Pohlke matrices
(one with “+ϱ ” and the other with “−ϱ ”) given by formula (4.6) for a fixed solution (α, β) of
system (3.5). Indeed, it is sufficient to write explicitly a column of B−A . For simplicity, below
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we compute (1 + α2 + β2)(B3 −A3) :
(1 + β2)x3 − αβy3 − αx1y2−y1x2

±ϱ

−αβx3 + (1 + α2)y3 − β x1y2−y1x2

±ϱ

αx3 + βy3 +
x1y2−y1x2

±ϱ

−


(1 + α2 + β2)x3

(1 + α2 + β2)y3

0

 =

(4.7)

=


−α2x3 − αβy3 − αx1y2−y1x2

±ϱ

−αβx3 − β2y3 − β x1y2−y1x2

±ϱ

αx3 + βy3 +
x1y2−y1x2

±ϱ

 = ν

 −α
−β
1

 ,

with ν = αx3 + βy3 +
x1y2−y1x2

±ϱ . This means that the direction of projection is given by the
column vector

U =

 −α
−β
1

 , (4.8)

and thus the two Pohlke matrices given by (4.6) are conjugate.

Remark 4.2 Let B the Pohlke matrix given by (4.6). Then, by (4.8), B corresponds to the
orthogonal projection onto the plane {z = 0} iff (α, β) = (0, 0) iff (γ, λ) = (π2 , 1) iff A1, A2 are
nonzero, orthogonal rows of equal norm, as we have already seen in Prop. 1.2. 2

Multiplicity of Pohlke matrices.

Having the expression (4.6), it is clear that there are at most four different Pohlke’s matrices.
On the other hand, still from (4.6), taking into account Lemma 3.2, we see that for B3 we have
the following possibilities:

B3 = ± αA1 + βA2

1 + α2 + β2
± A1 ∧A2

ϱ
, (4.9)

where, now, (α, β) is a fixed solution of system (3.5). Thus, since A1, A2 are linearly indepen-
dent, if (α, β) ̸= (0, 0) we find that

B3 = ±C ±D, (4.10)

with C, D two linearly independent rows. Hence, taking into account Prop. 1.2 and Lemma3.2,
in case of non-orthogonal projection there are exactly four distinct possibilities for B3 , i.e., four
different Pohlke matrices. Besides, by (4.8), for every solution (α, β) ̸= (0, 0) of system (3.5)
there are two distinct, conjugate Pohlke matrices. 2

Examples of Pohlke matrices.

(1) Let us consider the matrix

A =

 √
14/3

√
14/3

√
14/3

1 2 −3
0 0 0

 . (4.11)
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It is clear that ∥A1∥ = ∥A2∥ =
√
14 and A1 ⊥ A2 . Thus, by Proposition 1.2, there are only

two Pohlke matrices. Namely,

B =


√

14/3
√

14/3
√

14/3
1 2 −3

−5/
√
3 4/

√
3 1/

√
3

 (4.12)

or

B =


√
14/3

√
14/3

√
14/3

1 2 −3

5/
√
3 −4/

√
3 −1/

√
3

 . (4.13)

(2) Let us consider the matrix

A =


√
3−1
2

√
3+1
2

√
2

1 1 0
0 0 0

 . (4.14)

The hypotheses of Proposition 1.2 are not verified. We have

λ =
∥A1∥
∥A2∥

=
2√
2

=
√
2 ,

cos γ =
A1 ·A2

∥A1∥ ∥A2∥
=

√
3

2
√
2
,

(4.15)

and then

η =
λ2 + 1 +

√
(λ2 + 1)2 − 4λ2 sin2 γ

2λ2 sin2 γ
= 2 , ϱ =

∥A2∥√
η

=

√
2√
2
= 1 . (4.16)

Thus, applying Lemma3.2, we find

(α, β) = ±
(√

ηλ2 − 1 , sgn(cos γ)
√

η − 1
)

= ±
(√

3 , 1
)
. (4.17)

With these two solutions for (α, β) we can determine G̃−1 . We have:

G̃−1 =
1

5

 2 −
√
3 −

√
3

−
√
3 4 −1√
3 1 1

 (i) (4.18)

or

G̃−1 =
1

5

 2 −
√
3

√
3

−
√
3 4 1

−
√
3 −1 1

 (ii) (4.19)

Having A1 ∧A2 =
(
−

√
2 ,

√
2 ,−1

)
and ϱ = 1 , for the matrix G we find:

G =


√
3−1
2

√
3+1
2

√
2

1 1 0

−
√
2

√
2 −1

 (I) (4.20)
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or

G =


√
3−1
2

√
3+1
2

√
2

1 1 0√
2 −

√
2 1

 (II) (4.21)

Combining the matrices (4.18), (4.19), (4.20), (4.21) we have four possibilities, say B(i,I), B(i,II),

B(ii,I), B(ii,II) , for the Pohlke matrix B = ϱ G̃−1 G . More precisely, we have:

B(i,I) =
1

5


√
6− 1 1−

√
6 2

√
2 +

√
3

5+2
√
2+

√
3

2
5−2

√
2−

√
3

2 1−
√
6

5−2
√
2−

√
3

2
5+2

√
2+

√
3

2

√
6− 1

 , (4.22)

B(i,II) =
1

5

 −
√
6− 1

√
6 + 1 2

√
2−

√
3

5−2
√
2+

√
3

2
5+2

√
2−

√
3

2 −
√
6− 1

5+2
√
2−

√
3

2
5−2

√
2+

√
3

2

√
6 + 1

 , (4.23)

B(ii,I) =
1

5

 −
√
6− 1

√
6 + 1 2

√
2−

√
3

5−2
√
2+

√
3

2
5+2

√
2−

√
3

2 −
√
6− 1

−5−2
√
2+

√
3

2
−5+2

√
2−

√
3

2 −
√
6− 1

 , (4.24)

B(ii,II) =
1

5


√
6− 1 1−

√
6 2

√
2 +

√
3

5+2
√
2+

√
3

2
5−2

√
2−

√
3

2 1−
√
6

−5+2
√
2+

√
3

2
−5−2

√
2−

√
3

2 1−
√
6

 . (4.25)

Note that the couples of conjugate Pohlke matrices are B(i,I), B(i,II) and B(ii,I), B(ii,II) and

the corresponding directions of projection are:

U(i) =

 −
√
3

−1
1

 and U(ii) =

 √
3
1
1

 . (4.26)
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