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ON POLHKE’S TYPE PROJECTIONS IN THE CYLINDRICAL CASE

RENATO MANFRIN

ABSTRACT. Given three non-parallel segments OP1, OP2, OP3 in a plane ω , we consider
the ellipses EP1,P2 , EP2,P3 , EP3,P1 having as conjugate semi-diameters the pairs (OP1, OP2),
(OP2, OP3) and (OP3, OP1), respectively. We find the necessary and sufficient conditions
for (i) the existence of a common point P ∈ EP1,P2 ∩ EP2,P3 ∩ EP3,P1 and (ii) the existence of
a pair of parallel and distinct lines tangent to the three ellipses. In this later case, we solve
the problem by introducing the definition of cylindrical Pohlke’s projection.

1. INTRODUCTION AND MOTIVATIONS

Given two non-parallel segments OP1, OP2 in a plane ω, we set

−−→
OP3 = h

−−→
OP1 + k

−−→
OP2 for h, k ̸= 0 (1.1)

and then we consider the three concentric ellipses EP1,P2 , EP2,P3 , EP3,P1 determined by the
pairs of conjugate semi-diameter (OP1, OP2), (OP2, OP3) and (OP3, OP1), respectively.
It is possible to show that there exist at most two distinct ellipses, with center O, which
circumscribes EP1,P2 , EP2,P3 and EP3,P1 . More precisely,

1) the Pohlke’s ellipse EP , which exists for every choice of h, k ̸= 0 (see [1, 2, 3]). A
pair of conjugate semi-diameters of EP is given by the vectors (see [4, 6]):

k
−−→
OP1 − h

−−→
OP2√

h2 + k2
and

√
1 + h2 + k2

h2 + k2
−−→
OP3 . (1.2)
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Figure 1. Pohlke’s ellipse with P1 = (1.5, 1), P2(0.8, −2.2),
−−→
OP3 = 2

−−→
OP1 + 0.7

−−→
OP2 .

2) the secondary Pohlke’s ellipse ES (see [9, 5, 6]). For h, k ̸= 0, it exists if and only if

g(h, k) def
= (h + k + 1)(h + k − 1)(h − k + 1)(h − k − 1) > 0. (1.3)

The area of ES is always strictly greater than that of EP and a pair of conjugate
semi-diameters of ES is given by the vectors ([5, 6]):

K
−−→
OP1 − H

−−→
OP2√

H2 + K2
and

√
g + H2 + K2

g(H2 + K2)

(
H
−−→
OP1 + K

−−→
OP2

)
, (1.4)

where

H(h, k) def
= h(h2 − k2 − 1), K(h, k) def

= k(h2 − k2 + 1). (1.5)

O

P1

P2

P3

ES

Figure 2. Secondary Pohlke’s ellipse with P1 = (1.5, 1), P2(0.8, −2.2),
−−→
OP3 = 2

−−→
OP1 + 0.7

−−→
OP2 .

When instead of (1.3) we have g(h, k) < 0,1 two other possibilities arises (hyperbolic
Pohlke’s conics) depending on wether the quantity

g + H2 + K2 ≡ (h2 + k2 − 1)
[
(h2 − k2)2 − 1

]
(1.6)

is negative or positive. In [7, 8] it was proved that:

3) there exists at most one concentric ellipse EI inscribed in EP1,P2 , EP2,P3 , EP3,P1 and
it exists if and only if g(h, k) < 0 and g + H2 + K2 < 0. A pair of conjugate

1 Note that g(h, k) < 0 ⇒ h, k ̸= 0.
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semi-diameters is given, as for ES , by the expressions

K
−−→
OP1 − H

−−→
OP2√

H2 + K2
and

√
g + H2 + K2

g(H2 + K2)

(
H
−−→
OP1 + K

−−→
OP2

)
; (1.7)

O

P1

P2

P3

EI

Figure 3. Inscribed ellipse EI with P1 = (1.8, 1.4), P2(1.3, −2.2),
−−→
OP3 = 0.8

−−→
OP1 + 0.95

−−→
OP2 .

4) there exists at most one concentric hyperbola HC which circumscribes EP1,P2 ,
EP2,P3 , EP3,P1 and it exists if and only if g(h, k) < 0 and g + H2 + K2 > 0. A
pair of transverse (Σtr) and “imaginary” (Σim) conjugate semi-diameters is given
by the vectors

−→
Σ tr =

K
−−→
OP1 − H

−−→
OP2√

H2 + K2
and

−→
Σ im =

√
− g + H2 + K2

g(H2 + K2)

(
H
−−→
OP1 + K

−−→
OP2

)
, (1.8)

respectively. 2

O

P1

P2

P3

HC

HC

Figure 4. Hyperbola HC with P1 = (0.9, 1.8), P2(2.3, −1.4),
−−→
OP3 = 2

−−→
OP1 + 1.2

−−→
OP2 .

2. MAIN RESULTS

Here we investigate the residual cases that are not covered by the previous results:
(i) g(h, k) < 0 and (h2 + k2 − 1)

[
(h2 − k2)2 − 1

]
= 0;

2 This terminology is not very common. In other words, we mean that a parametrization of HC is given by
the expression P(t) = O ± cosh t

−→
Σ tr + sinh t

−→
Σ im, for t ∈ R.
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(ii) h, k ̸= 0 and g(h, k) = 0.

In case (i) we will show that, for g(h, k) < 0,

EP1,P2 ∩ EP2,P3 ∩ EP3,P1 ̸= ∅ if and only if (h2 + k2 − 1)
[
(h2 − k2)2 − 1

]
= 0. (2.1)

Furthermore, we have

EP1,P2 ∩ EP2,P3 ∩ EP3,P1 = {±P1} or {±P2} or {±P3} , 3 (2.2)

depending on whether h2 − k2 − 1 = 0 or h2 − k2 + 1 = 0 or h2 + k2 − 1 = 0 are respec-
tively valid. So EP1,P2 ∩ EP2,P3 ∩ EP3,P1 contains one and only one of points P1, P2, P3.

O
−P1

P1

P2

P3

EP

Figure 5. With P1 = (2.2, 0.6), P2(−1.5, 1.9) and
−−→
OP3 = 1.25

−−→
OP1 + 0.75

−−→
OP2 ,

EP and the intersection of EP1,P2 , EP2,P3 and EP3,P1 at ±P1.

In case (ii) we will prove that there exists a unique a pair T−, T+ of distinct and parallel
lines, tangent to EP1,P2 , EP2,P3 and EP3,P1 . More precisely, setting η = sgn

(
hk(h2 + k2 − 1)

)
, 4

T−, T+ are the lines passing through the points

O −
−−→
OP1 − η

−−→
OP2√

2
, O +

−−→
OP1 − η

−−→
OP2√

2
(2.3)

respectively, and parallel to the vector

−−→
OP1 + η

−−→
OP2 . (2.4)

This is the result that one can expect observing in (1.4) (or (1.8)) the limit behaviour of the
conjugate semi-diameters of the ellipse ES (or hyperbola HC) as (h, k) tends in {g > 0}
(in {g < 0}) to a limit point (h̄, k̄) such that h̄, k̄ ̸= 0 and g(h̄, k̄) = 0.

3 With −P we denotes the symmetric of P with respect to O; {±P} = {−P, P}.
4 Here sgn(t) = 1 for t > 0 and sgn(t) = −1 for t < 0. Note that h2 + k2 − 1 ̸= 0, if h, k ̸= 0 and g(h, k) = 0.
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O

P1

P2 P3

T+

T−

Figure 6. Tangent lines T−, T+ with P1 = (0.8, 1.5), P2(1.8, −1.3),
−−→
OP3 = 0.7

−−→
OP1 + 1.7

−−→
OP2 .

We will prove this fact by showing that the existence of the pair T−, T+ is equivalent to
the existence of a cylindrical Pohlke’s projection Π : E3 → ω. See Def. 4.5 below.

2.1. Some degenerate cases. We conclude this introduction recalling that, in some cases,
is possible to make sense of EP , ES and HC when OP3 ∥ OP1 or OP3 ∥ OP2 , i.e., in (1.1)
h or k are zero. This can be done introducing degenerate ellipses with parallel conjugate
semi-diameters ([1, 5]). For instance, if A ̸= O and OA ∥ OB, 5 the degenerate ellipse
EA,B is simply the segment MN ∥ OA such that

|MN|2 = 4
(
|OA|2 + |OB|2

)
,

M + N
2

= O, 6 (2.5)

and we say that EP (or ES , HC) circumscribes EA,B if M, N ∈ EP (or ES , HC). With this
argument it is possible to define the Pohlke’s ellipse EP even if both h, k are zero (expres-
sions (1.2) remain valid if at leat one of h, k is non-zero). We can also make sense of ES
and HC for (h, k) = (±1, 0) or (h, k) = (0,±1). But in these degenerate cases ES and HC

are not unique and, clearly, the expressions (1.4), (1.8) are no longer valid. See [5, 6, 7, 8].

3. CASE (I): g < 0 AND g + H2 + K2 = 0

First we note that the condition (i) is equivalent to

h, k ̸= 0 and (h2 + k2 − 1)
[
(h2 − k2)2 − 1

]
= 0. (3.1)

Then, we prove the following:

Theorem 3.1. Suppose OP1 ∦ OP2 and (1.1). Then,

EP1,P2 ∩ EP2,P3 ∩ EP3,P1 = {±P3} ⇔ h2 + k2 − 1 = 0; (3.2)

EP1,P2 ∩ EP2,P3 ∩ EP3,P1 = {±P2} ⇔ h2 − k2 + 1 = 0; (3.3)

EP1,P2 ∩ EP2,P3 ∩ EP3,P1 = {±P1} ⇔ h2 − k2 − 1 = 0. (3.4)

Proof. Let us suppose EP1,P2 ∩ EP2,P3 ∩ EP3,P1 = {±P3}.
This means that P3 ∈ EP1,P2 . Noting that EP1,P2 can be defined by the parametric equation

P(t) = O + cos t
−−→
OP1 + sin t

−−→
OP2 , t ∈ [0, 2π), (3.5)

5 In particular, if OB is a null segment, that is B = O.
6 Given P and Q, with P+Q

2 we indicate the midpoint of the segment PQ.
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it is clear that −−→
OP3 = cos t̄

−−→
OP1 + sin t̄

−−→
OP2 , (3.6)

for some t̄ ∈ [0, 2π). Since
−−→
OP1 and

−−→
OP2 are linearly independent, this gives

h = cos t̄, k = sin t̄. (3.7)

Conversely, let us suppose h2 + k2 − 1 = 0. It is clear that (3.7) holds for a unique
t̄ ∈ [0, 2π). Hence, taking into account the parametric equation (3.5), it follows that
±P3 ∈ EP1,P2 and than that {±P3} ⊂ EP1,P2 ∩ EP2,P3 ∩ EP3,P1 .
To prove that there are no other points in EP1,P2 ∩ EP2,P3 ∩ EP3,P1 it is enough to observe
that {±P3} ⊂ EP1,P2 ∩ EP2,P3 ∩ EP3,P1 implies:

• EP1,P2 ∩ EP2,P3 ∩ EP3,P1 ⊂ EP1,P2 ∩ EP2,P3 = {±P2,±P3}, because P2 ̸= ±P3 ; 7

• EP1,P2 ∩ EP2,P3 ∩ EP3,P1 ⊂ EP1,P2 ∩ EP3,P1 = {±P1,±P3}, because P1 ̸= ±P3 . 7

It is now sufficient to observe that P1 ̸= ±P2.
So far we have proved the equivalence (3.2). The proofs of (3.3) and (3.4) are similar,
because it is sufficient to exchange the roles of P1, P2, P3. For instance, if h2 − k2 + 1 = 0,
we write

−−→
OP2 = −h

k
−−→
OP1 +

1
k
−−→
OP3 , (3.8)

with (
−h

k

)2

+

(
1
k

)2

− 1 = 0. (3.9)

We therefore immediately find ourselves in the case (3.2). □

4. CASE (II): h, k ̸= 0 AND g = 0

To deal with case (ii) we resort to the parallel projection of a suitable cylinder with the
axis perpendicular to ω. To this end, in the Euclidean space E3 we fix from now on a
Cartesian system of coordinates x, y, z with the corresponding orthonormal basis i, j, k.
We also assume that

ω
def
=

{
(x, y, z) ∈ R3 ∣∣ z = 0

}
, (4.1)

ant that O ∈ ω is the origin of the coordinates.

Definition 4.1. Given a plane π and a non-zero vector w, w ∦ π, we say that P, Q are obliquely
symmetrical with respect to π, in the direction of w, if PQ ∥ w and P+Q

2 ∈ π . 6

Definition 4.2. Given a non-zero vector v ∦ k, that is

v = li + mj + nk with l, m, n ∈ R, l2 + m2 > 0, (4.2)

we denote with πv the plane
πv : lx + my = 0. (4.3)

We say that P, P′ are πv−symmetric if P, P′ are obliquely symmetrical with respect to the plane
πv, in the direction of v.

7 It is elementary that EP1,P2 ∩ EP2,P3 contains, at most, four distinct points. The same goes for EP1,P2 ∩ EP3,P1 .
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For ρ > 0, we denote with C = C (ρ) the cylinder

C (ρ)
def
=

{
(x, y, z) ∈ R3 ∣∣ x2 + y2 = ρ2}. (4.4)

Furthermore, given a point P ∈ C , we indicate with TC (P) the tangent plane to C at P.
Namely, if P = P(xP, yP, zP), the plane

TC (P) : xP x + yP y = ρ2. (4.5)

Definition 4.3. Given a non-zero vector v ∦ ω, we denote with Πv : R3 → ω the parallel
projection onto ω, in the direction of v. We say that Πv : R3 → ω is non-degenerate for C (or
simply non-degenerate) if we also have v ∦ k.

Definition 4.4. Let Πv and Πw be two non-degenerate projections onto ω. We say that Πv is
equivalent to Πw if and only if πv = πw.

Noting that C is πv–symmetric if v ∦ k (see Claim 5.1), we give the following definition:

Definition 4.5. Let OP1, OP2, OP3 ⊂ ω be three segments which are not contained in a line.
A non-degenerate parallel projection Πv : R3 → ω is a cylindrical Pohlke’s projection for
OP1, OP2, OP3 if there are a cylinder C = C (ρ), for some ρ > 0, and three points Q1, Q2, Q3 ∈
C such that

Πv(Qi) = Pi (1 ≤ i ≤ 3), (4.6)

OQ1 ∥ TC (Q2), OQ2 ∥ TC (Q3) and OQ3 ∥ TC (Q′
1), (4.7)

where Q′
1 ∈ C is πv−symmetric to Q1 in the sense of Def. 4.2 above.

Remark 4.6. Def. 4.5 is an adaptation to the cylindrical case of the secondary Pohlke’s pro-
jection definition given in [5, Def. 1.2]. With condition (4.7) we require that the intersections
of C with the planes passing through O, Q1, Q2 , through O, Q2, Q3 and through O, Q3, Q′

1
are three ellipses having as conjugate semi-diameters the pairs (OQ1, OQ2), (OQ2, OQ3) and
(OQ3, OQ′

1), respectively. See Claim 5.14 below.

If the segments OP1, OP2, OP3 are not parallel to each other, we can think (OP1, OP2),
(OP2, OP3) and (OP3, OP1) as pairs of conjugate semi-diameters of three concentric el-
lipses in the plane ω.

Definition 4.7. Given OP, OQ ⊂ ω, OP ∦ OQ, we denote with EP,Q the ellipse with OP, OQ
as conjugate semi-diameters.

Then, considering the ellipses EP1,P2 , EP2,P3 and EP3,P1 , we give the following definition:

Definition 4.8. Suppose OP1, OP2, OP3 are non-parallel. We say that T = T− ∪ T+ is a cylin-
drical Pohlke’s conic for OP1, OP2, OP3 if T−, T+ ⊂ ω are distinct and parallel lines, tangent to
three ellipse EP1,P2 , EP2,P3 and EP3,P1 . 8

With the previous definitions, we have:

Theorem 4.9. Suppose the segments OP1, OP2, OP3 are non-parallel. Then the following three
properties are equivalent:

8 In other words, T is a degenerate conic formed by a pair of distinct, parallel lines T−, T+ which are
symmetric with respect to the origin O, and tangent to EP1,P2 , EP2,P3 , EP3,P1 .
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(1) there is a cylindrical Pohlke’s projection Πv for OP1, OP2, OP3 ;
(2) there is a cylindrical Pohlke’s conic T = T− ∪ T+ for OP1, OP2, OP3 ;

(3)
−−→
OP3 = h

−−→
OP1 + k

−−→
OP2 with h, k ̸= 0 satisfying the condition

g(h, k) def
= (h + k + 1)(h + k − 1)(h − k + 1)(h − k − 1) = 0. (4.8)

If the above conditions are true, then T is unique and T−, T+ satisfy (2.3), (2.4); Πv is unique
up to equivalence in the sense of Def. 4.4 and C = C (ρ) with ρ half the distance between the
lines T−, T+ . Besides, we have T = Πv(C (ρ) ∩ πv).

5. SOME BASIC GEOMETRIC FACTS

Here we will state (and partly prove) some elementary facts regarding the cylinder C =
C (ρ) defined in (4.4). We start with some symmetry properties.

Claim 5.1. Let πv be the plane introduced in Def. 4.2. Then C is πv−symmetric.

Proof. Indeed, let r be any line parallel to v, that is,

r :


x = xo + lt
y = yo + mt
z = z0 + nt

(t ∈ R), for a suitable P(xo, yo, zo). (5.1)

Introducing the expressions (5.1) into the equation of C , we see that the points of r ∩ C
are determined by the real solutions of

(l2 + m2)t2 + 2(lxo + myo)t + x2
o + y2

o = ρ2. (5.2)

Since l2 + m2 ̸= 0, equation (5.2) is of second degree with roots t1, t2 such that

t1 + t2

2
= − lxo + myo

l2 + m2 . (5.3)

Now, if P ∈ C , the solutions of (5.2) are

t1 = 0 and t2 = −2
lxo + myo

l2 + m2 . (5.4)

Hence r ∩ C = {P(t1), P(t2)} with P(t1) = P and P(t2) such that

P(t1) + P(t2)

2
= P

(
t1 + t2

2

)
∈ πv , (5.5)

because of (5.1), (5.3). Thus P(t2) = P′ . □

Remark 5.2. From the proof of Claim 5.1 one can also see that r is tangent to C at P iff P ∈
C ∩ πv. In fact, if P ∈ C , we have t1 = t2 ⇔ lxo + myo = 0.

Definition 5.3. Given v ∦ k, we indicate with Sv the oblique symmetry with respect to πv , in

the direction of v. That is the map P(x, y, z) Sv−−→ P′(x′, y′, z′) given by

Sv(x, y, z) = (x − 2λl, y − 2λm, z − 2λn) with λ =
lx + my
l2 + m2 . □ (5.6)

Then, we can observe that
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Remark 5.4. We can also get Claim 5.1 directly from the oblique symmetry Sv introduced in
Def. 5.3. Indeed, it is easy to see that Sv(P) ∈ C iff P ∈ C .

5.1. The projection of C and C ∩ πv into ω. To continue we suppose v ∦ ω, k. Namely,
we assume that

v = li + mj + nk with l2 + m2 > 0, n ̸= 0. (5.7)

We can therefore define the non-degenerate projection Πv : R3 → ω.

Definition 5.5. Let Πv : R3 → ω be non-degenerate. With C = C (ρ), we set

Tv
def
= Πv(C ∩ πv) . (5.8)

It is elementary to see that
Tv = T −

v ∪T +
v , (5.9)

where T −
v , T +

v are the lines parallel to the vector l i+mj and passing through the points

O − ρ
mi − l j√
l2 + m2

and O + ρ
mi − l j√
l2 + m2

, (5.10)

respectively. We then give the following definition:

Definition 5.6. Given an ellipse E ⊂ ω with center O, we say that Tv = T −
v ∪T +

v is tangent
to E if the parallel lines T −

v and T +
v are both tangent to E .

Besides, we can note three other simple facts:

Claim 5.7. Let Πv, Πw : R3 → ω be non-degenerate and equivalent in the sense of Def. 4.4.
Besides, let C = C (ρ) for a fixed ρ > 0. Then Tv = Πv(C ∩ πv) = Πw(C ∩ πw) = Tw .

Claim 5.8. Let Πv : R3 → ω be non-degenerate. Then Πv(C ) = int(Tv), where int(Tv) ⊂
ω is the strip between T −

v and T +
v .

Claim 5.9. If π is a plane through O and π ∦ k, then C ∩ π is an ellipse in π with center O.

We can now prove the following:

Claim 5.10. Let Πv : R3 → ω be non-degenerate and let C = C (ρ) with ρ > 0.
1) Let E ⊂ Πv(C ) be an ellipse with center O and tangent to Tv = T −

v ∪ T +
v . Then

there are πv−symmetric planes π, π′ through O such that π, π′ ∦ v, k and

E = Πv(C ∩ π) = Πv(C ∩ π′). (5.11)

If (OP1, OP2) is a pair of conjugate semi-diameters of E then there are Q1, Q′
1, Q2, Q′

2 in
C such that Π−1

v (P1) ∩ C = {Q1, Q′
1}, Π−1

v (P2) ∩ C = {Q2, Q′
2} and (OQ1, OQ2),

(OQ′
1, OQ′

2) are pairs of conjugate semi-diameters of the ellipses C ∩ π and C ∩ π′,
respectively.

2) Conversely, if π is a plane through O such that π ∦ v, k then E = Πv(C ∩ π) is an
ellipse with center O and tangent to Tv .

Proof. 1) Let E ⊂ Πv(C ) be an ellipse with center O and tangent to Tv at X1 . Besides, let
X2 ∈ E such that OX1 ∦ OX2 (i.e., X2 ∈ E \Tv). Since we assume E ⊂ Πv(C ), we have

X1, X2 ∈ Πv(C ). (5.12)

71



RENATO MANFRIN

Thus there are Y1 ∈ C ∩ πv and Y2 ∈ C such that

Πv(Y1) = X1 , Πv(Y2) = X2 and OY1 ∦ OY2 . 9 (5.13)

To proceed, let π be the plane through the points O, Y1, Y2. It is clear that π ∦ v, otherwise
we would have OX1 = Πv(OY1) ∥ Πv(OY2) = OX2. Hence the restriction

Πv

∣∣∣
π

: π −→ ω defines an affine transformation. (5.14)

Also note that π ∦ k. 10 Hence, by Claim 5.9, C ∩ π is an ellipse with center O. By (5.14),

the same goes for Q def
= Πv(C ∩ π). Furthermore, by Claim 5.8,

X1 ∈ Q and Q ⊂ Πv(C ) =⇒ Q is tangent to Tv at X1 .11

This means that Q has in common with E the point X1 , the tangent at X1 and a second
point X2 such that OX1 ∦ OX2 . Since E and Q both have center at O, it follows that
E = Q = Πv(C ∩ π). Recalling also that C is πv−symmetric, if π′ is πv−symmetric to
π we immediately get

Πv(C ∩ π′) = Πv(C ∩ π) = E . (5.15)

So (5.11) is verified and, in particular, this implies that π′ ∦ v, k.
Next, let OP1, OP2 be conjugate semi-diameters of E . Having π, π′ ∦ v, the restrictions

Πv

∣∣∣
π

: π −→ ω and Πv

∣∣∣
π′

: π′ −→ ω are affine transformations. (5.16)

Then, by (5.15) and (5.16), there are Q1, Q2 ∈ C ∩ π and Q̃1, Q̃2 ∈ C ∩ π′ such that

Πv(Q1) = Πv(Q̃1) = P1 , Πv(Q2) = Πv(Q̃2) = P2 .

The pairs (OQ1, OQ2) and (OQ̃1, OQ̃2) are therefore conjugate semi-diameters of the
conics C ∩ π and C ∩ π′, respectively. On the other hand, it easy to show that Qi and Q̃i
are necessarily πv−symmetric, that is, Q̃i = Q′

i and

Π−1
v (Pi) ∩ C ={Qi, Q̃i} for i = 1, 2.

2) Conversely, let π be a plane through the origin O such that π ∦ v and π ∦ k. By
Claim 5.9, C ∩ π is an ellipse with center O and since we suppose π ∦ v, it is clear
that (5.14) holds. Thus E = Πv(C ∩ π) is an ellipse in ω, with center O. Moreover,
E ∩Tv ̸= ∅ because

(C ∩ π) ∩ (C ∩ πv) = C ∩ (π ∩ πv) ̸= ∅. 12

Taking into account that E ⊂ Πv(C ), from Claim 5.8 we then deduce that E and Tv are
tangent at the points of Πv

(
C ∩ πv ∩ π

)
. □

9 Note that Y1 is unique. In fact, since X1 ∈ Tv, the line through X1 and parallel to v is tangent to C at a
point of C ∩ πv. On the contrary Y2 is not unique because X2 ̸∈ Tv. Π−1

v (X2) ∩ C = {Y2, Y′
2} with Y2, Y′

2
πv−symmetric and Y2 ̸= Y′

2. See Claim 5.1 and Rem. 5.2 above.
10 Since O, Y1 ∈ πv ∩ π, we have that π ∥ k ⇒ π = πv. So X2 ∈ Πv(C ∩ π) = Πv(C ∩ πv) = Tv, which
is not true because OX2 ∦ OX1.
11 Indeed, let t1 be the tangent of Q at X1. Since X1 ∈ Tv , if t1 ∦ Tv then Q ̸⊂ int(Tv). This fact contradicts
Claim 5.8, because Q ⊂ Πv(C ).
12 Since π ∦ k, ℓ = π ∩ πv is a straight line passing through O and not parallel to k.
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5.2. Some properties of the tangent planes of C . To proceed, we recall that TC (P) de-
notes the tangent plane to C at P. More precisely, if C = C (ρ) and P = P(xP, yP, zP) ∈ C ,
TC (P) is the plane defined by equation (4.5).

Claim 5.11. If P, Q ∈ C and O is the origin of coordinates, then

OP ∥ TC (Q) ⇔ OQ ∥ TC (P). (5.17)

Proof. In fact, given P = P(xP, yP, zP) ∈ C and Q = Q(xQ, yQ, zQ), we have that

OQ ∥ TC (P) ⇔ xP xQ + yP yQ = 0. □ (5.18)

Noting that C is πv−symmetric, applying Claim 5.11 we easily obtain the following:

Claim 5.12. If P, Q ∈ C and P′, Q′ are πv−symmetric to P, Q respectively, then

OP ∥ TC (Q) ⇔ OP′ ∥ TC (Q′) (5.19)

and
OP ∥ TC (Q′) ⇔ OQ ∥ TC (P′). (5.20)

Proof. Recalling Def. 5.3 and Rem. 5.4, we easily have

Sv
(
TC (Q)

)
= TC (Q′), (5.21)

where Sv is the oblique symmetry with respect to the plane πv, in the direction of v. This
immediately gives (5.19). Then (5.20) follows from (5.19) and Claim 5.11. □

Definition 5.13. Assuming OP ∦ OQ, we denote with ⟨O, P, Q⟩ the plane through the origin
O and the points P, Q. With C(P, Q) we indicate the conic

C(P, Q)
def
= C ∩ ⟨O, P, Q⟩. (5.22)

Moreover, given R ∈ C(P, Q), we will denote with TC(P,Q)(R) ⊂ ⟨O, P, Q⟩ the tangent line to
C(P, Q) passing through the point R.

Claim 5.14. Suppose P, Q ∈ C. Then OP ∥ TC (Q) ⇔ OP ∦ OQ and C(P, Q) = C ∩
⟨O, P, Q⟩ is an ellipse with (OP, OQ) as a pair of conjugate semi-diameters.

Proof. ⇒ By (5.18) we immediately have that

P, Q ∈ C and OP ∥ TC (Q) ⇒ OP ∦ OQ. (5.23)

Besides, from OP ∥ TC (Q) it also follows that ⟨O, P, Q⟩ ∦ k . Therefore C(P, Q) =
C ∩ ⟨O, P, Q⟩ is an ellipse in ⟨O, P, Q⟩, with center O. Noting that TC (Q) ∦ ⟨O, P, Q⟩, we
deduce that the tangent line TC(P,Q)(Q) satisfies

TC(P,Q)(Q) = TC (Q) ∩ ⟨O, P, Q⟩, (5.24)

because it is clear that TC(P,Q)(Q) ⊂ TC (Q) and that TC(P,Q)(Q) ⊂ ⟨O, P, Q⟩.
Then, since OP ∥ ⟨O, P, Q⟩ and we suppose OP ∥ TC (Q), it follows that

OP ∥ TC(P,Q)(Q). (5.25)

Moreover, by Claim 5.11, OP ∥ TC (Q) ⇔ OQ ∥ TC (P). So with the same arguments
used above we can prove that

OQ ∥ TC(P,Q)(P). (5.26)
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Since we know that C(P, Q) is an ellipse, from (5.25) and (5.26) we deduce that (OP, OQ)
is a pair of conjugate semi-diameters of C(P, Q).
⇐ It follows from the properties of semi-diameters, because TC(P,Q)(Q) ⊂ TC (Q). □

Subsequently, taking into account Def. 4.7, we have:

Claim 5.15. Let Πv : R3 → ω be a parallel projection and let Q1, Q2 ∈ C such that OQ1 ∥
TC (Q2). Let P1 = Πv(Q1), P2 = Πv(Q2). If OP1 ∦ OP2 , then Πv

∣∣∣
⟨O,Q1,Q2⟩

: ⟨O, Q1, Q2⟩ →
ω defines an affine map such that

Πv(C(Q1, Q2)) = EP1,P2 . (5.27)

If we further suppose that Πv is non-degenerate, then EP1,P2 is tangent to Tv.

Proof. By Claim 5.14, we already know that OQ1 ∦ OQ2 and that C(Q1, Q2) is an ellipse
with conjugate semi-diameters OQ1,OQ2. Now, assuming OP1 ∦ OP2, we have that

OP1 ∦ OP2 and Πv(Q1) = P1, Πv(Q2) = P2 =⇒ v ∦ ⟨O, Q1, Q2⟩. (5.28)

So, the restriction

Πv

∣∣∣
⟨O,Q1,Q2⟩

: ⟨O, Q1, Q2⟩ → ω

defines an affine transformation. Having Πv(OQ1) = OP1 and Πv(OQ2) = OP2 , it is
therefore clear that (5.27) holds. Finally, if Πv is also non-degenerate, i.e., v ∦ k, from
part 2) of Claim 5.10 we immediately have that EP1,P2 is tangent to Tv. □

Finally, we note the following fact:

Remark 5.16. Let Sv be the oblique symmetry with respect to πv given by (5.6).
If Q1, Q2, Q3 ∈ C satisfy the conditions (4.6), (4.7) of Def. 4.5 then, by Claim 5.12, also the
points Q′

1 = Sv(Q1), Q′
2 = Sv(Q2) and Q′

3 = Sv(Q3) satisfy (4.6), (4.7). This means that in
Def. 4.5 the triads Q1, Q2, Q3 and Q′

1, Q′
2, Q′

3 are perfectly equivalent.

6. CYLINDRICAL POHLKE’S PROJECTION IN THE CIRCULAR CASE

To go further, let us now determine the cylindrical Pohlke’s projections in the circular
case. More precisely, instead of three generic non-parallel segments OP1, OP2, OP3 we
take three non-parallel segments ON1,ON2,ON3 ⊂ ω such that

ON1 ⊥ ON2 and |ON1| = |ON2| = 1. (6.1)

To avoid any confusion between the circular case and the general case, in the following we
also use R1, R2 and R3 instead of Q1, Q2 and Q3, respectively.

To begin with, according to Def. 4.5, we need to find Πv : R3 → ω non-degenerate and
then R1, R2 ∈ C (ρ) such that

Πv(R1) = N1 , Πv(R2) = N2 with OR1 ∥ TC (R2).

Assuming such a projection exists, from Claim 5.15 we deduce that EN1,N2 must be tan-
gent to Tv . Since EN1,N2 is the circle with center O and unit radius, we have:
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Claim 6.1. If (6.1) holds and if there is a cylindrical Pohlke’s projection for ON1, ON2, ON3
(according to Def. 4.5), then ρ = 1. That is, we have

C = C (1) =
{
(x, y, z) ∈ R3 ∣∣ x2 + y2 = 1

}
. (6.2)

After this, again assuming that the cylindrical Pohlke’s projection Πv exists, we note that
(6.1), (6.2) imply N1, N2 ∈ C . Thus we must have:

N1 = R1 or R′
1 and N2 = R2 or R′

2 . 13 (6.3)

But to satisfy the conditions of Def. 4.5 it is necessary to set

R1 = N1 and R2 = N2 (6.4)

or, equivalently by Rem. 5.16, R′
1 = N1 and R′

2 = N2 . 14

In fact, if we set R1 = N1 and R′
2 = N2, applying Claim 5.12, we find:

OR3 ∥ TC (R′
1) ⇔ OR1 ∥ TC (R′

3) ⇔ ON1 ∥ TC (R′
3), (6.5)

OR2 ∥ TC (R3) ⇔ OR′
2 ∥ TC (R′

3) ⇔ ON2 ∥ TC (R′
3). (6.6)

Now, from (5.18), it is easy to see that

ON1 ∥ TC (R′
3) and ON2 ∥ TC (R′

3) =⇒ OR′
3 ⊥ ω 15 (6.7)

and the latter condition cannot be satisfied if R′
3 ∈ C . Since the same argument works if

we try to define R′
1 = N1 and R2 = N2, we are forced to assume (6.4) (or, equivalently,

R′
1 = N1 and R′

2 = N2). Moreover, by choosing R1 = N1 and R2 = N2, we also find

R3 ̸= R′
3 . (6.8)

Indeed, if R3 = R′
3 , from Claim 5.12 and condition (4.7) we easily deduce that ON1 ∥

TC (R3) and ON2 ∥ TC (R3). Hence, as in (6.7), we find OR3 ⊥ ω which cannot be
satisfied. In conclusion, noting that (6.8) implies R3R′

3 ∥ v, we can say that:

Conditions 6.2. Having fixed the points R1 = N1, R2 = N2 as in (6.4), to have a cylindrical
Pohlke’s projection for ON1, ON2, ON3 as in (6.1), it is necessary and sufficient to determine
R3, R′

3 ∈ C (1), R3 ̸= R′
3 , such that the following conditions are true:

(a) ON2 ∥ TC (R3) and ON1 ∥ TC (R′
3), i.e., OR3 ∥ TC (N′

1), by Claim 5.12;
(b) R3R′

3 ∦ ω and R3R′
3 ∦ k , i.e., R3R′

3 gives the direction of the parallel projection onto ω
and this direction must be non-degenerate;

(c) R3, R′
3, N3 are collinear, i.e., Πv(R3) = Πv(R′

3) = N3 .

13 Given Q ∈ C , by (5.18) we know that OP ∥ TC (Q) ⇔ xP xQ + yP yQ = 0. So, having N1, N2 ∈ ω with
ON1 ⊥ ON2 , it follows that ON1 ∥ TC (N2) and ON2 ∥ TC (N1).
14 In the following will not distinguish between these two possibilities because, by Rem. 5.16, we know that
the triads R1, R2, R3 and R′

1, R′
2, R′

3 are equivalent. So will assume (6.4).
15 Given Q = (xQ, yQ, zQ) ∈ C and M1, M2 ∈ ω such that OM1 ∦ OM2, we have that OM1, OM2 ∥
TC (Q) ⇔ xQ = yQ = 0. But the latter condition is equivalent to OQ ⊥ ω .
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6.1. Explicit determination of Πv in the circular case. To proceed, we may suppose
that the coordinate axes are oriented in ω such that

N1 =

 1
0
0

, N2 =

 0
1
0

 and N3 =

 x
y
0

. (6.9)

In this way we have
−−→
ON3 = x

−−→
ON1 + y

−−→
ON2 . (6.10)

Then, taking into account (5.18), we see that (a) in Cond. 6.2 is satisfied iff R3 ∈ C ∩ {y =
0} and R′

3 ∈ C ∩ {x = 0} . Thus we can express R3 and R′
3 in the form

R3 =

 δ
0
α

 and R′
3 =

 0
δ ′

β

 (α, β ∈ R), (6.11)

where
δ, δ ′ ∈ {−1, 1}. (6.12)

Assuming (6.11) and (6.12), we certainly have R3 ̸= R′
3 and R3R′

3 ∦ k. This means that
(b) of Cond. 6.2 holds iff

α ̸= β. (6.13)

Besides, (c) of Cond. 6.2 is verified iff N3 = R3 + t
−−−→
R3R′

3 for some t ∈ R, i.e., x
y
0

 =

 δ
0
α

+ t

 −δ
δ ′

β − α

 for some t ∈ R. (6.14)

Claim 6.3. Suppose (6.14) holds with δ, δ ′ = ±1. Then x, y satisfy

(x + y + 1)(x + y − 1)(x − y + 1)(x − y − 1) = 0. (6.15)

If we further assume that α, β, β − α ̸= 0 then x, y ̸= 0.

Proof. Let t̄ be the solution of (6.14). The first two equations of (6.14) then give

x = δ − δ t̄ and y = δ ′ t̄ . (6.16)

Hence, for δ ′ ̸= 0, we find that

x +
δ

δ ′
y − δ = 0. (6.17)

Assuming δ, δ ′ = ±1, it is clear that (6.15) holds because one of the factors cancels out. 16

Finally, assuming α, β, β − α ̸= 0 the third equation of (6.14) implies t̄ ̸= 0, 1. Then the
first two equations of (6.14) give x, y ̸= 0. □

Conversely, we have the following:

Claim 6.4. Let us suppose x, y ̸= 0 are such that

(x + y + 1)(x + y − 1)(x − y + 1)(x − y − 1) = 0. (6.18)

16 If x, y ̸= 0 at most one of the factors of (6.15) can vanish.
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Then, there exist δ, δ ′ = ±1 and α, β ̸= 0, β − α ̸= 0, such that (6.14) holds. More precisely,
the constants δ and δ ′ are uniquely determined by

δ =
x2 − y2 + 1

2x
, δ ′ =

y2 − x2 + 1
2y

; (6.19)

α, β and are determined, up to a common non-zero factor, by

α = λ, β = λ

(
1 − δ ′

y

)
with λ ̸= 0 arbitrary. (6.20)

Proof. Since x, y ̸= 0, only one of the factors of the left-hand side of (6.18) is zero. There
are therefore unique δ, δ ′ ∈ {−1, 1} such that

x +
δ

δ ′
y − δ = 0. (6.21)

By setting t = y/δ ′, we have therefore x = δ − δt and y = δ ′t, i.e., the first two equations
of (6.14). To verify the third it is necessary and sufficient that

β = α

(
1 − 1

t

)
= α

(
1 − δ ′

y

)
. (6.22)

Noting that δ ′/y ̸= 0, 1, from (6.22) we find that β, β − α ̸= 0 iff α ̸= 0. It is therefore
clear that α, β must satisfy (6.20). Finally, to prove (6.19), noting (6.21) we can write

δ ′ =
yδ

δ − x
. (6.23)

Then, since δ2 = δ ′2 = 1, we easily have

1 − 2δx + x2 = y2, (6.24)

which allows us to obtain δ as in the first expression of (6.19). Similarly we get δ ′. □

Summarizing up, we may conclude the following:

Claim 6.5. Assume (6.1) is verified and that
−−→
ON3 = x

−−→
ON1 + y

−−→
ON2 with x, y ̸= 0. Then there

exists a cylindrical Pohlke’s projection Πv for ON1, ON2, ON3 if and only if

g(x, y) def
= (x + y + 1)(x + y − 1)(x − y + 1)(x − y − 1) = 0, (6.25)

and this projection is unique up to equivalence in the sense of Def. 4.4
More precisely, if (6.25) holds, we have C = C (1) and the projection direction may be parallel
to any vector of the form

v =
−−→
ON1 + η

−−→
ON2 + λ k with λ ̸= 0 arbitrary (6.26)

and η = sgn
(
xy(x2 + y2 − 1)

)
. 4

Proof. Suppose there exists a cylindrical Pohlke’s projection Πv for ON1, ON2 ON3 . From
Claim 6.1, we know that ρ = 1, i.e., C = C (1). Besides, from Cond. 6.2, it follows that
(6.14) must be verified for appropriate values of the constants δ, δ ′ ∈ {−1, 1} and β ̸= α.
Then, applying Claim 6.3, with get the condition g(x, y) = 0.
Conversely, let us suppose g(x, y) = 0. Having assumed x, y ̸= 0, by Claim 6.4 we
deduce that (6.14) is verified for δ, δ ′ ∈ {−1, 1} given by (6.19) and α, β as in (6.20). By

77



RENATO MANFRIN

Cond. 6.2 there are then infinite cylindrical Pohlke’s projections (all with C = C (1), for
Claim 6.1) and by (6.9), (6.11) and (6.20) the projections directions must be parallel to

−−→
R3R′

3 = −δ
−−→
ON1 + δ ′

−−→
ON2 − λ

δ ′

y
k , (6.27)

with the given δ, δ ′ ∈ {−1, 1} and λ ̸= 0 arbitrary. So these projections are all equivalent,
in the sense of Def. 4.4. Finally, using (6.19) and condition (6.18), we can express δδ ′ as

δδ ′ =
1 − (x2 − y2)2

4xy
=

1 − x2 − y2

2xy
. (6.28)

We therefore deduce that

−δδ ′ =

{
1, if xy(x2 + y2 − 1) > 0
−1, if xy(x2 + y2 − 1) < 0

(6.29)

from which we immediately obtain the simplified form (6.26). □

7. PROOF OF THEOREM 4.9

(1) ⇒ (2). It is sufficient to apply Claim 5.15.
Indeed, we are assuming OPi ∦ OPj (1 ≤ i < j ≤ 3). Hence, taking into account the
conditions (4.6), (4.7) of Def. 4.5, from the first part of Claim 5.15 we get:

Πv(Q1) = P1, Πv(Q2) = P2 and OQ1 ∥ TC (Q2) ⇒ Πv(C(Q1, Q2)) = EP1,P2 , (7.1)

Πv(Q2) = P2, Πv(Q3) = P3 and OQ2 ∥ TC (Q3) ⇒ Πv(C(Q2, Q3)) = EP2,P3 . (7.2)

Noting that Πv(Q′
1) = P1 , we also find that

Πv(Q3) = P3, Πv(Q′
1) = P1 and OQ3 ∥ TC (Q′

1) ⇒ Πv(C(Q3, Q′
1)) = EP3,P1 . (7.3)

Furthermore, since Πv is non-degenerate, from the second part of Claim 5.15 we deduce
that EP1,P2 , EP2,P3 , EP3,P1 are tangent to Tv = Πv(C (ρ) ∩ πv). In conclusion

T = Tv

is a cylindrical Pohlke’s conic for OP1, OP2, OP3 .

(2) ⇒ (1). This implication can be obtained by applying part 1) of Claim 5.10 and then
Claim A.1 of the Appendix. Indeed, let T = T− ∪ T+ be a cylindrical Pohlke’s conic for
OP1, OP2, OP3 . To begin with, we fix

ρ = d/2, with d def
= distance between T− and T+ , (7.4)

and then a non-zero vector w ∥ ω such that T−, T+ ∥ w. Next we set

v = w + λk, (7.5)

with λ ̸= 0 arbitrary. This means that

T− ∪ T+ = Πv(C (ρ) ∩ πv) = Tv . (7.6)

After that, we consider the ellipses EP1,P2 , EP2,P3 and EP3,P1 , which are tangent to Tv .
Starting with EP1,P2 , by part 1) of Claim 5.10 there is a plane π, through the origin O, such
that C ∩ π is an ellipse and Πv(C ∩ π) = EP1,P2 . Furthermore, there are Q1, Q2 ∈ C ∩ π
such that Πv(Q1) = P1 , Πv(Q2) = P2 and OQ1, OQ2 are conjugate semi-diameters of the
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ellipse C ∩ π. With the notation of Def. 5.13, this later fact implies OQ1 ∥ TC(Q1,Q2)(Q2).
Then

OQ1 ∥ TC(Q1,Q2)(Q2) and TC(Q1,Q2)(Q2) ⊂ TC (Q2) ⇒ OQ1 ∥ TC (Q2). (7.7)

So the first condition of (4.7) is satisfied. To proceed further, we consider EP2,P3 . Again
from part 1) of Claim 5.10 we can find a plane π̃, through O and Q2 , such that C ∩ π̃ is
an ellipse and Πv(C ∩ π̃) = EP2,P3 . Besides, we can also find a point Q3 ∈ C ∩ π̃ such
that Πv(Q3) = P3 and OQ2, OQ3 are conjugate semi-diameters of C ∩ π̃ . As above, we
deduce that

OQ2 ∥ TC (Q3). (7.8)
So the second condition of (4.7) holds.
Finally, we consider the ellipse EP3,P1 . Noting that

Π−1
v (P1) ∩ C = {Q1, Q′

1} with Q1, Q′
1 πv − symmetric, (7.9)

and reasoning as above, it is clear that at least one of the following must be true:

OQ3 ∥ TC (Q1) or OQ3 ∥ TC (Q′
1). (7.10)

But, by Claim A.1, we cannot have the sequence

OQ1 ∥ TC (Q2), OQ2 ∥ TC (Q3) and OQ3 ∥ TC (Q1), (7.11)

with Q1, Q2, Q3 ∈ C . Hence the second (and only the second) of (7.10) is true.
In conclusion, we have found three points Q1, Q2, Q3 ∈ C = C (ρ) such that (4.6) and
(4.7) hold. This means that the projection Πv, thus determined, is a cylindrical Pohlke’s
projection for OP1, OP2, OP3.

7.1. The equivalence of (1),(2) with (3). To prove that (1),(2) ⇔ (3), we use the equiv-
alence (1) ⇔ (2) just proven and resort to a suitable circular case. More precisely, let
N1, N2 ∈ ω such that

ON1 ⊥ ON2 and |ON1| = |ON2| = 1. (7.12)

Since OP1 ∦ OP2, we may consider the affine transformation Φ : ω → ω defined by

Φ(O + x
−−→
OP1 + y

−−→
OP2 )

def
= O + x

−−→
ON1 + y

−−→
ON2 for x, y ∈ R. (7.13)

It is clear that Φ(P1) = N1, Φ(P2) = N2 . Besides, if
−−→
OP3 = h

−−→
OP1 + k

−−→
OP2, then

N3
def
= Φ(P3) = O + h

−−→
ON1 + k

−−→
ON2 . (7.14)

Hence, having OP3 ∦ OP1, OP2 , we find
−−→
ON3 = h

−−→
ON1 + k

−−→
ON2 and ON3 ∦ ON1, ON2 (i.e., h, k ̸= 0). (7.15)

As it is known, an affine transformation maps conjugate semi-diameters of a central
conic into conjugate semi-diameters of the transformed conic. This means that Φ(EP1,P2) =
EN1,N2 , Φ(EP2,P3) = EN2,N3 and Φ(EP3,P1) = EN3,N1 . Besides, if T = T− ∪T+ is a cylindrical
Pohlke’s conic for OP1, OP2, OP3 (that is, T−, T+ are distinct and parallel lines, tangent
to EP1,P2 , EP2,P3 , EP3,P1) then Φ(T ) = Φ(T−) ∪ Φ(T+) is cylindrical Pohlke’s conic for
ON1, ON2, ON3 (that is, Φ(T−), Φ(T+) are distinct and parallel lines, tangent to EN1,N2 ,
EN2,N3 , EN3,N1). Finally, the converse is also true, because Φ−1 : ω → ω is still an affine
transformation. Hence, according to Def. 4.8, we can state the following:
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Claim 7.1. Let Φ : ω → ω be the affine transformation defined in (7.13).
If T is a cylindrical Pohlke’s conic for OP1, OP2, OP3, then Φ(T ) is a cylindrical Pohlke’s conic
for ON1, ON2, ON3 and vice versa.

(1),(2) ⇒ (3). Now let us suppose that (2) holds, namely that there is a cylindrical
Pohlke’s conic T for OP1, OP2, OP3. Then

To = Φ(T ) (7.16)

is a cylindrical Pohlke’s conic for ON1, ON2, ON3. Having already proved that (2) ⇒ (1),
there is then a cylindrical Pohlke’s projection for ON1, ON2, ON3. By (7.12) and (7.15) we
can apply Claim 6.5 to ON1, ON2, ON3 . We therefore conclude that h, k must satisfy (4.8).
(3) ⇒ (1),(2). Conversely, let us suppose that (3) holds, i.e., h, k ̸= 0 satisfy the condition
(4.8). Then, by Claim 6.5, there is a cylindrical Pohlke’s projection for ON1, ON2, ON2 .
By the implication (1) ⇒ (2), we deduce the existence of a cylindrical Pohlke’s conic, say
To , for ON1, ON2, ON3 . Then

T = Φ−1(To) (7.17)
is a cylindrical Pohlke’s conic for OP1, OP2, OP3. We have thus shown that (2) holds.

7.2. Uniqueness of Πv, T and proof of (2.3), (2.4). By (1) ⇒ (2), we already know that
if Πv is a cylindrical Pohlke’s projection for OP1, OP2, OP3, then Tv = Πv(C (ρ) ∩ πv)
is cylindrical Pohlke’s conic for OP1, OP2, OP3. In the circular case, i.e., for non-parallel
ON1, ON2, ON3 such that (6.1) holds, we have the following:

Corollary 7.2. With the assumptions of Claim 6.5, if (6.25) holds then the exists a unique cylin-
drical Pohlke’s conic T for ON1, ON2, ON3 and it is given by

T = Πv(C (1) ∩ πv) = T −
v ∪T +

v , (7.18)

with v as in (6.26). More precisely, T −
v and T +

v are the lines passing through the points

O −
−−→
ON1 − η

−−→
ON2√

2
and O +

−−→
ON1 − η

−−→
ON2√

2
, (7.19)

respectively, and parallel to
−−→
ON1 + η

−−→
ON2 .

Proof. For Claim 6.1 in the circular case we have C = C (1). From implication (1) ⇒
(2) and Claim 6.5, we have then that T = Πv(C (1) ∩ πv) (with v as in (6.26)) gives
a cylindrical Pohlke’s conic for ON1, ON2, ON3. By (6.26) it is also clear that T thus
determined does not depend on the choice of λ ̸= 0 17 and taking into account Def. 5.5 we
have T = T −

v ∪T +
v , with T −

v , T +
v ∥ −−→

ON1 + η
−−→
ON2 . Moreover, since η = ±1 and we are

assuming |ON1| = |ON2| = 1, with ON1 ⊥ ON2, it follows that ||−−→ON1 − η
−−→
ON2|| =

√
2.

We can therefore easily see (as in formula (5.10)) that the lines T −
v , T +

v pass through the
points given by (7.19).
It remains to be shown that the cylindrical Pohlke’s conic is unique. For this purpose, we
can use the same arguments of the implication (2) ⇒ (1) proved above. In fact, given a
cylindrical Pohlke’s conic F (for N1, N2, N3), we can prove that there exists a cylindrical
Pohlke’s projection Πu (for N1, N2, N3) and that, as in (7.6),

F = F− ∪ F+ = Πu(C (ρ) ∩ πu), (7.20)

17 This follows also from Claim 5.7.
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with ρ given as in (7.4). Now we can observe that (7.20) requires ρ = 1, because EN1,N2 is
a circle with unit radius and F is tangent to EN1,N2 . Besides, since we are in the circular
case, by Claim 6.5 the projection Πu is uniquely determined up to equivalence in the
sense of Def. 4.4. In other words, Πu is equivalent to any projection Πv determined by
(6.26). Then, by Claim 5.7, the right hand side of (7.20) is independent of F , i.e., F = T .
We have thus demonstrated that in the circular case T is unique. □

We can now prove the uniqueness of Πv and T in Theorem 4.9.

Uniqueness of T . The uniqueness of cylindrical Pohlke’s conic T for OP1, OP2, OP3
follows immediately from the uniqueness in the circular case just proved in Cor. 7.2. In
fact, applying Claim 7.1, we know that T is a cylindrical Pohlke’s conic for OP1, OP2,
OP3 if and only if Φ(T ) is a cylindrical Pohlke’s conic for ON1, ON2, ON3.

Uniqueness of Πv . So far we have shown that there is a unique cylindrical Pohlke’s
conic T = T− ∪ T+ for OP1, OP2, OP3. Now, let Πv be a cylindrical Pohlke’s projection
(according to Def. 4.5) for OP1, OP2, OP3 . In (1) ⇒ (2) we have shown that Πv(C (ρ)∩πv)
gives a cylindrical Pohlke’s conic for OP1, OP2, OP3. Then, we must have

Πv(C (ρ) ∩ πv) = T . (7.21)

Having proved (7.21) it is then sufficient to observe, as in (2) ⇒ (1), that ρ is uniquely
determined by T (see (7.4)) and we must also have

v ∥ w + λk for some λ ̸= 0, (7.22)

where w is a non-zero vector such that T−, T+ ∥ w. This means that the cylindrical
Pohlke’s projection for OP1, OP2, OP3 is uniquely determined up to equivalence in the
sense of Def. 4.4.

Proof of (2.3), (2.4). Again for Claim 7.1, both these formulas follows immediately, via
the inverse of the affine transformation Φ defined in (7.13), from the analogous formulas
demonstrated in the circular case. See Claim 6.5 and Cor. 7.2.

A. APPENDIX

In Def. 4.5 we require the condition

OQ1 ∥ TC (Q2), OQ2 ∥ TC (Q3) and OQ3 ∥ TC (Q′
1), (A.1)

where Q′
1 ∈ C (ρ) is the point πv − symmetric of Q1. It is easy to prove that in the last

term of (A.1) we cannot replace Q′
1 with Q1. In fact, we have:

Claim A.1. There does not exist Q1, Q2, Q3 ∈ C (ρ) such that

OQ1 ∥ TC (Q2), OQ2 ∥ TC (Q3) and OQ3 ∥ TC (Q1). (A.2)

Proof. Writing Q1 = (x1, y1, z1), Q2 = (x2, y2, z2) and Q3 = (x3, y3, z3), by (5.18) we can
reformulate (A.2) in the equivalent form:

x1x2 + y1y2 = 0
x2x3 + y2y3 = 0
x1x3 + y1y3 = 0

(A.3)
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Then, assuming Q1, Q2 ∈ C (ρ) are such that OQ1 ∥ TC (Q2) (i.e., the first equation of
(A.3) holds), we easily see that there does not exist Q3 ∈ C (ρ) such that OQ2 ∥ TC (Q3)
and OQ3 ∥ TC (Q1) (i.e., the last two equations of (A.3) hold). In fact, since Q1, Q2 ∈
C (ρ), the first equation of (A.3) gives∣∣∣∣x1 y1

x2 y2

∣∣∣∣ = ± ρ2 ̸= 0. (A.4)

Then the last two of (A.3) imply x3 = y3 = 0. So Q3 ̸∈ C (ρ), regardless of ρ > 0. □

In particular, Claim A.1 has the following consequence:

Corollary A.2. If Q1, Q2, Q3 ∈ C satisfy (A.1), then Qi ̸= Q′
i for 1 ≤ i ≤ 3.

Proof. In fact, if Qi = Q′
i for some 1 ≤ i ≤ 3, renaming the points Q1, Q2, Q3 we get (A.2).

For instance, let us suppose Q2 = Q′
2. Noting that Q2 = Q′

2 and OQ2 ∥ TC (Q3) ⇒
OQ2 ∥ TC (Q′

3) and that OQ3 ∥ TC (Q′
1) ⇔ OQ′

3 ∥ TC (Q1), we merely set

R1 = Q1, R2 = Q2, R3 = Q′
3 .

Then R1, R2, R3 ∈ C (ρ) satisfy OR1 ∥ TC (R2), OR2 ∥ TC (R3) and OR3 ∥ TC (R1). □
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