A short proof of Pohlke-Schwarz's theorem via Pohlke's theorem

Renato Manfrin

May 17, 2018

Abstract

We give a proof of Pohlke-Schwarz's theorem of oblique axonometry with explicit formulae for the reference tetrahedron and the direction of projection onto the image plane.

Mathematics Subject Classification: Primary: 51N10; Secondary: 51N05.

Keywords: Pohlke-Schwarz theorem, oblique axonometry.

1 Introduction

In 1864 H.A. Schwarz [10] published the proof the following generalized statement of Pohlke's fundamental theorem of oblique axonometry [9]:
three arbitrary straight line segments $O P_{1}, O P_{2}, O P_{3}$ in a plane, originating from a point O and which are not contained in a line, can be considered as the parallel projection of three edges $O Q_{1}, O Q_{2}, O Q_{3}$ of a tetrahedron that is similar to a given tetrahedron,

Several purely geometric proofs and, in a few instances, analytic proofs were given. See, among the others, [1], [2], [3], [5] [8]. Here, applying the results of [7], we give a straightforward proof of the above statement together with explicit formulae for the edges $O Q_{1}, O Q_{2}, O Q_{3}$ of reference tetrahedron and the direction of the parallel projection onto the image plane.

As we did in [7] for Pohlke's theorem, we reformulate the Pohlke-Schwarz's theorem as a result of linear algebra for square matrices of order 3 . For these reason, and to avoid repetitions, all the matrices that we consider from now on are 3×3, real matrices. If A is such a matrix, with A^{i} and $A_{i}(1 \leq i \leq 3)$ we denote, respectively, columns and rows vectors of A.

1.1 Reformulation of the problem

To begin with, we introduce a cartesian system of coordinate axes x, y, z such that

$$
O=\left(\begin{array}{l}
0 \tag{1.1}\\
0 \\
0
\end{array}\right) \quad \text { and } \quad P_{i}=\left(\begin{array}{c}
\mathbf{x}_{i} \\
\mathbf{y}_{i} \\
0
\end{array}\right) \quad(1 \leq i \leq 3)
$$

are points of the image plane $\{z=0\}$ and then we define the matrix

$$
\mathbf{A} \stackrel{\text { def }}{=}\left(\begin{array}{ccc}
\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3} \tag{1.2}\\
\mathbf{y}_{1} & \mathbf{y}_{2} & \mathbf{y}_{3} \\
0 & 0 & 0
\end{array}\right) .
$$

Furthermore, we represent a given tetrahedron, with a vertex at the origin O, by a 3×3 matrix whose columns are the coordinates of the other vertices.

After this, if the matrices S, T represent two given tetrahedrons, we say that:
Definition 1.1 S, T are "geometrically similar" if $T=H S$ with H a nonzero multiple of an orthogonal matrix, i.e., $H H^{t}=\mu I$ for some $\mu>0$.

Remark 1.2 This is clearly an equivalence relation, but it is different from the usual definition of "similar" matrices. See [6, Definition 5.1.1].

Pohlke-Schwarz's theorem can now be stated as follows:
Theorem 1.3 Assume that rank $\mathbf{A}=2$, and let S be an invertible matrix. Then, there exist a matrix \mathbf{B}, geometrically similar to S,

$$
\mathbf{B}=\left(\begin{array}{ccc}
\mathbf{x}_{1}^{\prime} & \mathbf{x}_{2}^{\prime} & \mathbf{x}_{3}^{\prime} \tag{1.3}\\
\mathbf{y}_{1}^{\prime} & \mathbf{y}_{2}^{\prime} & \mathbf{y}_{3}^{\prime} \\
\mathbf{z}_{1}^{\prime} & \mathbf{z}_{2}^{\prime} & \mathbf{z}_{3}^{\prime}
\end{array}\right)
$$

and a parallel projection $\boldsymbol{\Pi}$ onto the plane $\{z=0\}$ such that $\boldsymbol{\Pi}\left(\mathbf{B}^{i}\right)=\mathbf{A}^{i}$, i.e.,

$$
\boldsymbol{\Pi}\left(\begin{array}{c}
\mathbf{x}_{i}^{\prime} \tag{1.4}\\
\mathbf{y}_{i}^{\prime} \\
\mathbf{z}_{i}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{x}_{i} \\
\mathbf{y}_{i} \\
0
\end{array}\right), \quad 1 \leq i \leq 3
$$

2 Proof of Theorem 1.3

Since S is invertible, we can define the matrix

$$
A \stackrel{\text { def }}{=} \mathbf{A} S^{-1}=\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \tag{2.1}\\
y_{1} & y_{2} & y_{3} \\
0 & 0 & 0
\end{array}\right)
$$

Noting that $\operatorname{rank} A=2$ and $A_{3}=(0,0,0)$, we can apply to A the Pohlke's theorem in the form stated in [7, Theorem 1.1]. This means that:
there exist a matrix B, with orthogonal columns of equal norm, and a parallel projection Π onto the image plane $\{z=0\}$ such that

$$
\begin{equation*}
\Pi\left(B^{i}\right)=A^{i}, \quad 1 \leq i \leq 3 \tag{2.2}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
\operatorname{rank}(B-A)=1 \tag{2.3}
\end{equation*}
$$

Then, setting

$$
\begin{equation*}
\mathbf{B}=B S \tag{2.4}
\end{equation*}
$$

we find that

$$
\begin{equation*}
\operatorname{rank}(\mathbf{B}-\mathbf{A})=\operatorname{rank}(B-A) S=1 \tag{2.5}
\end{equation*}
$$

because S is invertible.

It follows that there exist a column vector \mathbf{U} and real coefficients ν_{i} such that

$$
\begin{equation*}
\mathbf{B}^{i}-\mathbf{A}^{i}=\nu_{i} \mathbf{U}, \quad 1 \leq i \leq 3 . \tag{2.6}
\end{equation*}
$$

Moreover, $\mathbf{U} \notin \operatorname{span}\left\{\mathbf{A}^{1}, \mathbf{A}^{2}, \mathbf{A}^{3}\right\}=\{z=0\}$ because $\operatorname{rank} \mathbf{B}=3$.
Thus, we can define the parallel projection $\boldsymbol{\Pi}$, onto the image plane $\{z=0\}$, in the direction of the column vector \mathbf{U}. Clearly, $\boldsymbol{\Pi}$ verifies

$$
\begin{equation*}
\boldsymbol{\Pi}\left(\mathbf{B}^{i}\right)=\mathbf{A}^{i}, \quad 1 \leq i \leq 3 . \tag{2.7}
\end{equation*}
$$

Moreover, since B is a nonzero a multiple of an orthogonal matrix, $\mathbf{B}=B S$ is geometrically similar to S. This concludes the proof Theorem 1.3.

Remark 2.1 In the previous proof we have

$$
\begin{equation*}
\Pi \equiv \Pi . \tag{2.8}
\end{equation*}
$$

In fact, Π and Π are both parallel projections onto the image plane $\{z=0\}$.
Besides, by (2.3), there exist a column vector U and real coefficients μ_{i} such that

$$
\begin{equation*}
B^{i}-A^{i}=\mu_{i} U, \quad 1 \leq i \leq 3 . \tag{2.9}
\end{equation*}
$$

Introducing the row vector $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$, we have $B-A=U \mu$. Hence, we deduce that

$$
\begin{equation*}
\mathbf{B}-\mathbf{A}=(B-A) S=U \mu S=\left(\left(\mu S^{1}\right) U,\left(\mu S^{2}\right) U,\left(\mu S^{3}\right) U\right), \tag{2.10}
\end{equation*}
$$

i.e., $\mathbf{B}^{i}-\mathbf{A}^{i}=\left(\mu S^{i}\right) U$. Thus $\boldsymbol{\Pi}, \Pi$ project in the same direction onto the image plane $\{z=0\}$ and formula (2.6) can be verified by taking $\mathbf{U}=U$.

As by product of Remark 2.1, we can state a simple generalization, for oblique system of coordinate-axes, of the Gauss' fundamental theorem of orthogonal axonometry (see [4] for more general results in this direction). More precisely, denoting with Π_{\perp} the orthogonal projection onto the image plane $\{z=0\}$, we have:

Corollary 2.2 Let S be invertible and let \mathbf{A}, A be the matrices defined in (1.2), (2.1). Then, there exists a matrix \mathbf{B}, geometrically similar to S, such that $\Pi_{\perp}\left(\mathbf{B}^{i}\right)=\mathbf{A}^{i}$ if and only if

$$
\begin{equation*}
\left\|A_{1}\right\|=\left\|A_{2}\right\| \neq 0 \quad \text { with } \quad A_{1} \perp A_{2} . \tag{2.11}
\end{equation*}
$$

Proof: Taking into account Remark 2.1, it is enough to apply [7, Proposition 1.2] to the rows of the matrix $A=\mathbf{A} S^{-1}$.

2.1 Reference tetrahedron and direction of projection

Following the steps of the proof of Theorem 1.3, we can now determine the matrix \mathbf{B} and a column vector \mathbf{U} representing the direction of the parallel projection $\boldsymbol{\Pi}$ onto the image plane $\{z=0\}$. We begin by setting:

$$
\begin{equation*}
A_{1}=\mathbf{A}_{1} S^{-1}, \quad A_{2}=\mathbf{A}_{2} S^{-1} \tag{2.12}
\end{equation*}
$$

That is $A_{1}=\left(x_{1}, x_{2}, x_{3}\right), A_{2}=\left(y_{1}, y_{2}, y_{3}\right)$ as in (2.1).
Besides, as in formulae (3.6), (3.10), (3.21), (3.22) of [7], we define the quantities:

$$
\begin{gather*}
\gamma=\arccos \left(\frac{A_{1} \cdot A_{2}}{\left\|A_{1}\right\|\left\|A_{2}\right\|}\right), \quad \lambda=\frac{\left\|A_{1}\right\|}{\left\|A_{2}\right\|}, \tag{2.13}\\
\eta=\frac{\lambda^{2}+1+\sqrt{\left(\lambda^{2}+1\right)^{2}-4 \lambda^{2} \sin ^{2} \gamma}}{2 \lambda^{2} \sin ^{2} \gamma}, \tag{2.14}\\
\nu= \pm \varrho \quad \text { with } \quad \varrho=\frac{\left\|A_{1}\right\|}{\lambda \sqrt{\eta}}=\frac{\left\|A_{2}\right\|}{\sqrt{\eta}}, \tag{2.15}
\end{gather*}
$$

and, finally,

$$
\begin{equation*}
(\alpha, \beta)= \pm\left(\sqrt{\eta \lambda^{2}-1}, \operatorname{sgn}(\cos \gamma) \sqrt{\eta-1}\right) \tag{2.16}
\end{equation*}
$$

with the "signum" function:

$$
\operatorname{sgn}(t) \doteqdot\left\{\begin{array}{cl}
1 & \text { if } \quad t \geq 0 \tag{2.1.1}\\
-1 & \text { if } \quad t<0
\end{array}\right.
$$

Then, by the results of [7, Chapter 4], the matrix B and the direction U of the projection Π satisfying (2.2) are given by the relations:

$$
\begin{gather*}
B=\frac{1}{1+\alpha^{2}+\beta^{2}}\left(\begin{array}{ccc}
1+\beta^{2} & -\alpha \beta & -\alpha \\
-\alpha \beta & 1+\alpha^{2} & -\beta \\
\alpha & \beta & 1
\end{array}\right)\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
\frac{x_{2} y_{3}-y_{2} x_{3}}{\nu} & \frac{y_{1} x_{3}-x_{1} y_{3}}{\nu} & \frac{x_{1} y_{2}-y_{1} x_{2}}{\nu}
\end{array}\right), \tag{2.18}\\
U \tag{2.19}\\
U\left(\begin{array}{c}
-\alpha \\
-\beta \\
1
\end{array}\right) .
\end{gather*}
$$

Taking into account (2.4) and Remark 2.1, we may conclude by setting:

$$
\begin{equation*}
\mathbf{B}=B S, \quad \mathbf{U}=U . \tag{2.20}
\end{equation*}
$$

In particular, we have

$$
\boldsymbol{\Pi}\left(\begin{array}{l}
x \tag{2.21}\\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x+\alpha z \\
y+\beta z \\
0
\end{array}\right) .
$$

References

[1] Beskin N. An Analogue of Pohlke-Schwarz's theorem in central axonometry, Recueil Mathématique [Math. Sbornik] N.S., Vol. 19(61) (1946), pp. 57-72.
[2] Campedelli L. Lezioni di Geometria, Vol. II - Parte I, Cedam, Padova 1972.
[3] Cayley A. On a problem of Projection, Quartely Journal of Pure and Applied Mathematics, vol. XIII (1875), pp. 19-29.
[4] Eastwood M.G. and Penrose R. Drawing with complex numbers, Mathematical Intelligencer 22 (2000), pp. 8-13.
[5] Emch A. Proof of Pohlke's Theorem and Its Generalizations by Affinity, American Journal of Mathematics, 40 (1918), pp. 366-374.
[6] Eves H. Elementary Matrix Theory, Dover Publications, New York, 1966.
[7] Manfrin R. A proof of Pohlke's theorem with an analytic determination of the reference trihedron, to apper.
[8] Pelz K. Über einen neuen Beweis des Fundamentalsatzes von Pohlke, Sitzungsb. der kaiser. Akademie der Wissenschaften in Wien, LXXVI (1877), 123-138.
[9] Pohlke K.W. Lehrbuch der Darstellenden Geometrie, Part I, Berlin, 1860.
[10] Schwarz H.A. Elementarer Beweis des Pohlkeschen Fundamentalsatzes der Axonometrie, Crelle's Journal, vol. LXIII (1864), pp. 309-314.

Dipartimento di Culture del Progetto Università IUAV di Venezia
Dorsoduro 2196, Cotonificio Veneziano 30123 Venezia, ITALY
E-mail address : manfrin@iuav.it

