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Abstract

We give a proof of Pohlke-Schwarz’s theorem of oblique axonometry with explicit formulae
for the reference tetrahedron and the direction of projection onto the image plane.
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1 Introduction

In 1864 H.A. Schwarz [10] published the proof the following generalized statement of Pohlke’s
fundamental theorem of oblique axonometry [9]:

three arbitrary straight line segments OP1, OP2, OP3 in a plane, originating from a point O
and which are not contained in a line, can be considered as the parallel projection of three edges
OQ1, OQ2, OQ3 of a tetrahedron that is similar to a given tetrahedron,

Several purely geometric proofs and, in a few instances, analytic proofs were given. See,
among the others, [1], [2], [3], [5] [8]. Here, applying the results of [7], we give a straightforward
proof of the above statement together with explicit formulae for the edges OQ1, OQ2, OQ3 of
reference tetrahedron and the direction of the parallel projection onto the image plane.

As we did in [7] for Pohlke’s theorem, we reformulate the Pohlke-Schwarz’s theorem as a result
of linear algebra for square matrices of order 3 . For these reason, and to avoid repetitions, all
the matrices that we consider from now on are 3× 3 , real matrices. If A is such a matrix, with
Ai and Ai (1 ≤ i ≤ 3) we denote, respectively, columns and rows vectors of A.

1.1 Reformulation of the problem

To begin with, we introduce a cartesian system of coordinate axes x, y, z such that

O =

 0
0
0

 and Pi =

 xi

yi

0

 (1 ≤ i ≤ 3) (1.1)

are points of the image plane {z = 0} and then we define the matrix

A
def
=

 x1 x2 x3

y1 y2 y3

0 0 0

 . (1.2)
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Furthermore, we represent a given tetrahedron, with a vertex at the origin O , by a 3 × 3
matrix whose columns are the coordinates of the other vertices.

After this, if the matrices S, T represent two given tetrahedrons, we say that:

Definition 1.1 S, T are “geometrically similar” if T = HS with H a nonzero multiple of an
orthogonal matrix, i.e., HHt = µI for some µ > 0 .

Remark 1.2 This is clearly an equivalence relation, but it is different from the usual definition
of “similar” matrices. See [6, Definition 5.1.1]. 2

Pohlke-Schwarz’s theorem can now be stated as follows:

Theorem 1.3 Assume that rankA = 2 , and let S be an invertible matrix. Then, there exist
a matrix B , geometrically similar to S,

B =

 x′
1 x′

2 x′
3

y′
1 y′

2 y′
3

z′1 z′2 z′3

 , (1.3)

and a parallel projection Π onto the plane {z = 0} such that Π
(
Bi

)
= Ai , i.e.,

Π

 x′
i

y′
i

z′i

 =

 xi

yi

0

 , 1 ≤ i ≤ 3 . (1.4)

2 Proof of Theorem 1.3

Since S is invertible, we can define the matrix

A
def
= AS−1 =

 x1 x2 x3
y1 y2 y3
0 0 0

 . (2.1)

Noting that rankA = 2 and A3 = (0, 0, 0) , we can apply to A the Pohlke’s theorem in the
form stated in [7, Theorem1.1]. This means that:

there exist a matrix B , with orthogonal columns of equal norm, and a parallel projection
Π onto the image plane {z = 0} such that

Π(Bi) = Ai, 1 ≤ i ≤ 3 . (2.2)

In particular, we have
rank (B −A) = 1 . (2.3)

Then, setting
B = BS , (2.4)

we find that
rank (B−A) = rank (B −A)S = 1 , (2.5)

because S is invertible.
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It follows that there exist a column vector U and real coefficients νi such that

Bi −Ai = νiU , 1 ≤ i ≤ 3 . (2.6)

Moreover, U ̸∈ span{A1,A2,A3} = {z = 0} because rankB = 3 .
Thus, we can define the parallel projection Π , onto the image plane {z = 0}, in the direction

of the column vector U . Clearly, Π verifies

Π(Bi) = Ai, 1 ≤ i ≤ 3 . (2.7)

Moreover, since B is a nonzero a multiple of an orthogonal matrix, B = BS is geometrically
similar to S . This concludes the proof Theorem1.3. 2

Remark 2.1 In the previous proof we have

Π ≡ Π . (2.8)

In fact, Π and Π are both parallel projections onto the image plane {z = 0} .
Besides, by (2.3), there exist a column vector U and real coefficients µi such that

Bi −Ai = µiU , 1 ≤ i ≤ 3 . (2.9)

Introducing the row vector µ = (µ1, µ2, µ3) , we have B −A = Uµ . Hence, we deduce that

B−A = (B −A)S = UµS =
(
(µS1)U, (µS2)U, (µS3)U

)
, (2.10)

i.e., Bi−Ai = (µSi)U . Thus Π, Π project in the same direction onto the image plane {z = 0}
and formula (2.6) can be verified by taking U = U . 2

As by product of Remark 2.1, we can state a simple generalization, for oblique system of
coordinate-axes, of the Gauss’ fundamental theorem of orthogonal axonometry (see [4] for more
general results in this direction). More precisely, denoting with Π⊥ the orthogonal projection
onto the image plane {z = 0} , we have:

Corollary 2.2 Let S be invertible and let A , A be the matrices defined in (1.2), (2.1). Then,
there exists a matrix B, geometrically similar to S, such that Π⊥(B

i) = Ai if and only if

∥A1∥ = ∥A2∥ ̸= 0 with A1⊥A2 . (2.11)

Proof: Taking into account Remark 2.1, it is enough to apply [7, Proposition 1.2] to the rows
of the matrix A = AS−1 . 2

2.1 Reference tetrahedron and direction of projection

Following the steps of the proof of Theorem1.3, we can now determine the matrix B and a
column vector U representing the direction of the parallel projection Π onto the image plane
{z = 0}. We begin by setting:

A1 = A1S
−1 , A2 = A2S

−1. (2.12)
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That is A1 = (x1, x2, x3) , A2 = (y1, y2, y3) as in (2.1).

Besides, as in formulae (3.6), (3.10), (3.21), (3.22) of [7], we define the quantities:

γ = arccos

(
A1 ·A2

∥A1∥ ∥A2∥

)
, λ =

∥A1∥
∥A2∥

, (2.13)

η =
λ2 + 1 +

√
(λ2 + 1)2 − 4λ2 sin2γ

2λ2 sin2γ
, (2.14)

ν = ± ϱ with ϱ =
∥A1∥
λ
√
η

=
∥A2∥√

η
, (2.15)

and, finally,

(α, β) = ±
(√

η λ2 − 1 , sgn(cos γ)
√

η − 1
)

(2.16)

with the “signum” function:

sgn(t) +
{

1 if t ≥ 0 ,

−1 if t < 0 .
(2.17)

Then, by the results of [7, Chapter 4], the matrix B and the direction U of the projection Π
satisfying (2.2) are given by the relations:

B =
1

1 + α2 + β2

 1 + β2 −αβ −α
−αβ 1 + α2 −β
α β 1


 x1 x2 x3

y1 y2 y3
x2y3−y2x3

ν
y1x3−x1y3

ν
x1y2−y1x2

ν

 , (2.18)

U =

 −α
−β
1

 . (2.19)

Taking into account (2.4) and Remark 2.1, we may conclude by setting:

B = BS , U = U. (2.20)

In particular, we have

Π

 x
y
z

 =

 x+ αz
y + βz

0

 . (2.21)
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