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Abstract

Let OPy, OP;, OP5 be three non-parallel segments in a plane. The purpose of this note
is to extend the results obtained in [6] and [7] determining the common inscribed ellipse
and the common circumscribing hyperbola (with center O) of the three ellipses having as
conjugate semi-diameters the pairs (OP;, OP,), (OP2, OPs) and (OP5,OPy).
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1 Introduction

Given three non-parallel segments OP;, OPs, OP5 originating at O and lying in a plane w, we
consider the three concentric ellipses €p, p,, €p,,p;, €p;,p, determined by the pairs of conjugate
semi-diameter (OP;,OPs), (OP,,OP3) and (OPs, OPy), respectively.

It is a simple consequence of Pohlke’s fundamental theorem ([1], [4], [5], [8]) that there is
always an ellipse with center O, here indicated with & (Pohlke’s ellipse), which circumscribes
Ep,.py, Epy.py and Ep, py ([2], [3], [6]). ! Tt is possible to show (see [7, Thm. 3.8]) that if

OP; =hOP, +kOP,, (1.1)
then a pair of conjugate semi-diameters of &Ep is given by the vectors

—  kOP, — hOP, —W> 14+h24+k2 —
ov="r__—2  OW=/——— OF. (1.2)
Vh? 4+ k? h? + k?

Again supposing that OP;, OP,,OP5 are non-parallel, if we further assume that
(h+k+1)(h+Ek-1)(h—k+1)(h—k—-1)>0, (1.3)

then there is a second concentric ellipse, other than &, which circumscribes £p, p,, €p,.p, and
Ep,,p,. We call this new ellipse the secondary Pohlke’s ellipse Es. It turns out that & is unique
and that (1.3) is also a necessary condition. See [6], [7] and [10].

L If 0Q1,0Q2,0Q3 are congruent, mutually orthogonal segments and II : R* — w is a parallel projection
such that II1(Q;) = P; for i = 1,2, 3, then the ellipse & is the contour of TI(S), where S C R?* is the sphere with
center O containing Q1, Q2, Q3. The existence and uniqueness of & derive from Pohlke’s theorem.
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It is worth noting that in both the above cases the circumscribing ellipse (& or &) is
obtained as the contour of the parallel projection, into the drawing plane w, of a suitable sphere
with center O. In the present paper we investigated what happens when (1.3) does not hold,
i.e., when the secondary Pohlke’s ellipse £ does not exist. For this purpose we use the parallel
projection, on the plane w, of a suitable hyperboloid. We show that if

(h+k+1)(h+k—1)(h—k+1)(h—k—1) <0, (1.4)

and
flhk) = (B> + K> = 1)[(h* — k%) = 1)] #0, (1.5)

then there is a third conic, with center O, tangent to Ep, p,, Ep,.p, and Ep, p,.

Further, it turns out that this conic is an ellipse, say &1, inscribed in Ep, p,, Ep, Py, Epy,p,
if h, k are such that f(h,k) < 0. Conversely, it is a hyperbola, say Hc, which circumscribes
the three ellipses Ep, p,, Epy.py, Epyp if f(h k) > 0.2 Both & and Hc, when they exit,
are unique and the conditions (1.4), (1.5) are also necessary. But, unlike what happens in the
previous two cases (i.e., for the ellipses & and &), now the conics £ and Hc are obtained as
the contour of the parallel projection of a suitable one-sheeted hyperboloid centered in O and
with axis perpendicular to the plane w.

1.1 Definitions and Main Results

In the Euclidean space E3 we fix a plane w and a system of coordinates such that

w & {(x,y,z)eR?"z:O}. (1.6)

We denote with O € w the origin of coordinates.

Definition 1.1 Given a plane © and a non-zero vector w, w }f w, we say that P,Q are obliquely
symmetrical with respect to w, in the direction of w, if

PQ|w and P;Q em 3 (1.7)
Definition 1.2 Given a non-zero vector
v=Ili+mj+nk (I,m,neR), (1.8)
we denote with my the plane
Tyt lx+my—nz=0. (1.9)

When v }f my (i.e., if 1> +m? —n® # 0), we say that P, P’ are my,-symmetric if P, P’ are
obliquely symmetrical with respect to the plane w, in the direction of v.
For p > 0, we denote with J# = 7 (p) be the one-sheeted hyperboloid

H(p) € {(x,y,2) e R |a? +2 — 2% = p*}. (1.10)

Furthermore, given a point P € 7, we indicate with T, (P) the tangent plane to S at P.
Namely, if P = P(xp,yp, 2p), the plane
Tw(P): xpx + ypy — 2p2 = p°. (1.11)

2 H¢ circumscribes Ep,.p,, Epy,ps, Epy,py in the sense of Def. 2.8 below.
3 With # we will indicate the midpoint of the segment PQ.
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Definition 1.3 Let v be a non-zero vector such that v }f w. We denote with
I, : R — w (1.12)

the parallel projection onto w, in the direction of v. If v }f w and v = li + mj + nk, we say
that Tl : R® — w is non-degenerate for H (or, simply, non-degenerate) if 1> +m? —n? # 0.
Similarly, we say that v gives a non-degenerate projection direction.

Definition 1.4 Let OP;,OP,, OP3 C w be three segments which are not contained in a line.

A non-degenerate parallel projection 11, : R® — w is a hyperbolic Pohlke’s projection for
OPy,0P,,0P5 if there are a hyperboloid 5 = I (p), for some p > 0, and three points
Q1,Q2,Q3 € F such that

I,(Q:) =P (1<i<3), (1.13)
0Q1 | T (Q2), OQ2 || T (Qs) and OQs || T (QY), (1.14)
where Q) € H is wy—symmelric to Q1 in the sense of Def. 1.2 above.

If the segments OP;,OP», OP; are not parallel to each other, we can think (OP;,OP,),
(OP2,0Ps) and (OP3,OP) as pairs of conjugate semi-diameters of three concentric ellipses.

Definition 1.5 Given OP,0Q C w, OP }f OQ, we denote with Epg the ellipse with OP, OQ

as conjugate semi-diameters.
Then, considering the ellipses Ep, p,, €p, p, and Ep, p,, we give the following definition:

Definition 1.6 Suppose OP;, OPs, OP5 are non-parallel. A conic C, with center O, is a hyper-
bolic Pohlke’s conic for OPy, OPs,OPs5 if one of the following holds:

o C is an ellipse inscribed in Ep, p,, Epy.pys Epypy -t
e C is a hyperbola which circumscribes Ep, p,, Ep, py, Epy.py -

Theorem 1.7 Suppose the segments OP;,OP,, OP5 are non-parallel. Then the following three
properties are equivalent:

(1) there is a hyperbolic Pohlke’s projection Ily for OPy,OP,, OPs;
(2) there is a hyperbolic Pohlke’s conic C for OP;,OPy, OPs;

(3) OP3 = hOP; + kOP, with h, k satisfying the conditions
F k) L W2+ —1)[(R2 = k) —1)] #£0 (1.15)

and
g ) (h+k+ D) (h+k—1)(h—k+1)(h—k—1)<0. (1.16)

4 In other words, we require that C be tangent to the three ellipses Ep,,p,, Epy,py> Eps,p, and that

a) C C int(Ep,,p,) Nint(Ep,,p,) Nint(Ep,,p, ), if C is an ellipse;
b) Ep.,py, Epy,py, Epy,p, C int(C), if C is a hyperbola.

Here, given a central conic C (i.e., an ellipse or a hyperbola) in a plane 7, we denote with int(C) (interior of C)
the closure in 7 of the connected component of 7\ C containing the center of C. See Defs. 2.7, 2.8 below.
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If the above conditions are true, the conic C is unique and it turns out that C is an ellipse if
f(h,k) <0, while C is a hyperbola if f(h,k) > 0. The projection Il is unique up to symmetry
with respect to the plane w.® Besides,

C=I(ZNmny) (1.17)
where €, my satisfy the conditions of Def. 1.4.

If OP;,0OP,,OP5 are not contained in a line but two of them are parallel, in particular if
one of them vanishes, we need to introduce degenerate ellipses. 6

Definition 1.8 If OP,0Q do not both vanish and OP | OQ, the degenerate ellipse Epq is the
segment M N parallel to OP,0Q such that

M+N

IMN|* =4(|OP]* 4+ |0Q|*) and 5

0. (1.18)

Given a central conic C, with center O, we say that C circumscribes the degenerate ellipse Ep g
(or that Epq is inscribed in C) if M,N € C. 7

Now we can reformulate Def. 1.6 just saying that:

Definition 1.9 If OP;,0OP,,0OP5 are not contained in a line but two of them are parallel, a
hyperbolic Pohlke’s conic for OPy,OPs, OPs is a hyperbola, with center O, circumscribing the
three (eventually degenerate) ellipses Ep, p,, Epy.Pys Epy P, -

Using the Def. 1.9, instead of Def. 1.6, we can state the following;:

Theorem 1.10 Suppose OPy, O P>, OPs5 are not contained in o line. If two of them are parallel,
then there are infinitely many, distinct hyperbolic Pohlke’s projections (conics) if these two
segments are equal (i.e., congruent), none if they are different.

2 Some basic geometric facts

We shall prove here a number of facts about the one-sheeted hyperboloid J# = 7 (p) defined
in (1.10). We start with some symmetry properties.

Claim 2.1 Let 7y be the plane introduced in Def. 1.2 and let us suppose that 1> +m? —n? # 0.
Then A is my—symmetric (i.e., P € # = P' € ).

Proof. Indeed, let r be any line parallel to v, that is,

T =z, + It
r:q y=1y,+mt (t€R), fora suitable P(z,,Yo,20)- (2.1)

z2=2z,+nt

® In the sense that, in Def. 1.4, the hyperboloid A (p) is unique and the projection direction (represented by
the vector v) is unique up to orthogonal symmetry (i.e., the usual symmetry) with respect to w.

5 We assume, by convention, that the null segment is parallel to any other segment. Degenerate ellipses were
introduced in [1, pp. 372-373]. See also Defs. 3.1, 3.3 of [6].

" Note that M, N € C = Epg C int(C) See Def. 2.7 below.
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Introducing the expressions (2.1) into the equation of J#, we see that the points of r N . are
determined by the real solutions of

(12 +m? —n®)t* + 2(lxo + myo, — nzo)t + 22 + y2 — 22 = p*. (2.2)

Since 12 +m? — n? # 0, equation (2.2) is of second degree with roots ¢,y such that

i+t lro+my, —nz

= 2.
2 12+ m? —n? (2:3)
Now, if P € 7, the solutions of (2.2) are
lxy, + my, — Nz,
tl =0 and t2 =-2 l2 i m2 — 7’L2 (24)
Hence r N = {P(t1), P(t2)} with P(t;) = P and P(t2) such that
P(t P(t t t
“%%(ﬁzp<1+2>em, (2.5)
2 2
because of (2.1), (2.3). Thus P(t2) = P'. O

Remark 2.2 From the proof of Claim 2.1 one can also see that r is tangent to 7€ at P iff
Pe#nNny. In fact, if P € 3, we have t; =ty < lx, +my, — nz, = 0.

Definition 2.3 Let v = li + mj + nk with 1> +m? —n? # 0. We indicate with Sy the map
associated to the oblique symmetry with respect to my, in the direction of v. That is the map

P(z,y,2) 2 Py, ), (2.6)

given by

lx +my —nz

Sv(xaya Z) = (33‘ - 2)\l7 Yy — 2)\771, Z = 2)\’[2) with A = 12 4 m2 —n2°

O (2.7)

Note that, according to Def. 2.3, Sk represents the orthogonal symmetry (i.e., the usual sym-
metry) with respect to the plane w. Besides, we observe that

Remark 2.4 We can also get Claim 2.1 directly from the oblique symmetry Sy introduced in
Def. 2.3. Indeed, it is easy to see that Sy(P) € A iff P € 7.

2.1 The intersection of 77 with the plane 7,

If 7y is the plane introduced in Def. 1.2, it is clear that JZ N 7y is non-empty, symmetric with
respect to O and such that O ¢ 5 Nmy,. Thus 5 N, must be a central conic in m, with
center O, if it is non-degenerate. ® On the other hand, if J# N7, is degenerate, then it is a pair
of distinct, parallel lines which are symmetric with respect to O. More precisely,

Claim 2.5 Let 7y, be the plane introduced in Def. 1.2, then

8 That is, a non-degenerate conic with center, i.e., an ellipse or a hyperbola.
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(1) 2 Ny is an ellipse < 1> +m? —n?<0.?
(2) A Ny is a pair of distinct, parallel lines < 1? +m? —n? = 0.
(3) A Ny is a hyperbola < 12 +m? —n? > 0.
Proof. < To begin with, let us suppose n = 0. Then we have 1> + m? —n? > 0 and
Ty lx +my = 0.

From the identity
(1 +m?) (2 + %) = (lz +my)? + (mz — ly)?, (2.8)

we deduce that J# Ny is given by the points P(x,y, z) € 7y such that

(max — ly)2 2 2

P2 = F (2.9)
But (2.9) represents a hyperbola in 7y, because h = % and k = z may be considered as

coordinates in 7. Next, let us suppose n # 0. In this case the coordinates of the points of 7y,

satisfy the relation
lx +my
z2=—.

2.10
4 (210)
Hence ¢ Ny is given by the points P(x,y, z) € my such that

(n? = 1%)2? + (n? — m?*)y* — 2lmay = n’p*. (2.11)

Equation (2.11) (with the condition z = 0) defines a conic C, with center O, in the plane w.
Namely, C is an ellipse if {? +m? —n? < 0, while C is a hyperbola if 12 +m? —n? > 0. Noting
that J# N7y is the image of C via the affine transformation T : w — 7y,

lw+my> (2.12)

T
(Z’, y) — <$7 Y,
n
¢ N7y is an ellipse or a hyperbola depending on whether the quantity [? +m? —n? is < 0 or
> 0, respectively. Finally, let us suppose n # 0 and 12 +m? —n? = 0. In this last case (2.11)
factorizes as

(mx —ly + np)(mx — ly —np) =0, (2.13)

because n? — 12 = m? and n? — m? = [2. Thus # N7, is a pair of distinct, parallel lines which
are symmetric with respect to O.
= The reverse implication is now an immediate consequence of the fact that by proving < we

have exhausted all possible cases for the sign of the quantity (* + m? — n?. |

For the sake of brevity, we will later say that:

Definition 2.6 C is an admissible conic if C is a central conic centered at O, or a pair of
distinct, parallel lines which are symmetric with respect to O.

9 We will distinguish between circles and ellipses only when strictly necessary. In this case it is not difficult
to show that ##Z N7y isacircle & [ =m =0.
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2.2 The projection of 7 into the plane

We will adopt the following terminology:
Definition 2.7 Let C C 7 be a central conic in a plane 7, i.e., an ellipse or a hyperbola.

(1) We denote with int(C) (interior of C) the closure in 7 of the connected component of
7\ C containing the center of C.

(2) We denote also with ext(C) (exterior of C) the closure in m of 7\ int(C).

Definition 2.8 Given two concentric central conics C1, Co C w, we will say that Cy is inscribed
in Cy (or, equivalently, that Co circumscribes C1 ) if C1 and Cy are tangent and C; C int(Cq).

Remark 2.9 As it is known, in an appropriate coordinate system (say x,y) a central conic C
has the simple equation Ax? + puy? =1, with A >0 and pu # 0. Then, we have

int(C) = {P(x,y) € (| Ax? + py? < 1},
ext(C) = {P(x,y) € (| Ax? 4+ py? > 1} O
If v =i+ mj + nk provides a non-degenerate projection direction (Def. 1.3), i.e.,
2 +m?—n?#£0, (2.14)

we may consider the parallel projection ﬁv :R3 — 7, in the direction of v; that is

~ £ lx +my —nz

Iy (z,y, 2) ke (x=Al,y—Am,z—An) with \= Pm?—nZ (2.15)

Applying Claim 2.5, we have:

Claim 2.10 Let Il : R® — 7, be the projection defined by (2.15), then

(a) Uy (52) = ext(H Nry) if Ny is an ellipse, i.e., if 1> +m? —n? <0.
(b) Iy () = int (S N7y) if A N7y is a hyperbola, i.c., if 12+ m? —n2 > 0.
Proof. Indeed, given P(z,,Ys,2,) € 7y, we have that
P eIl (#) <= equation (2.2) has a real solution.
Since lx, + my, — nz, = 0 in 7y, from (2.2) we see that:
(@) Pell () & a2+4y2—22> p? if # Nny is an ellipse.

(b)) Pell () = 22+ y2—22<p% if # Nmy is a hyperbola.
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Supposing for the moment n # 0 and using (2.10), we see that:
@") @3 +ys— 2 2 p* & (0= 1)} + (n? —m?)yl — 2mizoy, > n?p?,
(0") @5 +y3 — 25 < p* & (n° = 1)ad + (n? —m?)y] — 2mlzoy, < n?p?,

depending on whether 7 N, is an ellipse or a hyperbola, respectively. In other words, given
P(x0,Y0,20) € Ty, we deduce that:

(@) P el (#) < (24,ys) is exterior to the ellipse £ C w, with

E:(n? —1%)2® + (n® — m?)y? — 2mlxy = n*p?,

(") P elly(#) < (x,yo) Is interior to the hyperbola H C w, with
H: (n® — 1®)2® 4+ (n? — m?)y? — 2mlxy = n?p?,

depending on whether JZ N7y, is respectively an ellipse or a hyperbola.

To conclude, it is now sufficient to observe that in any case the plane m is the affine image, via
the transformation T : w — my in (2.12), of the plane w and that, by (2.10)—(2.11), the same
transformation maps the conic £ C w, or H C w, onto 4 N my. Hence we also have:

(@"") (zo,9yo) is exterior to the ellipse £ < P is exterior to the ellipse 7 N7y,

(0"") (x0,9,) is interior to the hyperbola H < P is interior to the hyperbola # Ny,

depending on whether 52 N 7, is respectively an ellipse or a hyperbola.

Finally, let us suppose n = 0. In this case 12 +m? —n? > 0, thus J# N, is a hyperbola
in my. Given P = P(xo, Yo, 20) € Ty, using the identity (2.8) we can rewrite the condition (b'),
that is, 22 + y2 — 22 < p?, in the form

(Mo — lyo)? — (12 +m?)=2 < (12 + m?)p?, (2.16)
because P € my < lx, + my, = 0. Then, introducing in 7, the coordinates h = ";;:ZQ and
k = z, we immediately see that condition (2.16) is equivalent to

h: — k2 < p? with hy = h(Zo,Yo), ko = Zo. (2.17)

This, in turn, is equivalent to saying that P € my is interior to the hyperbola 5 N . In fact,
with the coordinates (h, k), the equation of ./ Ny is exactly h? —k? = p?, as one can see from
the first part of the proof of Claim 2.5. O

2.3 The projection of # and 57 N7, into the plane w

To continue we suppose

v=Ili+mj+nk with n#0. (2.18)
We can therefore define the projection II, : R? — w in the direction of v. Namely
l
Iy (z,y, 2) dof <:U ——2z,y— mZ, O). (2.19)
n n

Assuming also 12 + m? — n? # 0 the restriction of II, to the plane 7y : lz +my —nz =0 is an

affine transformation from 7y to w. Noting that II,(O) = O, taking into account Def. 1.3 and
Claim 2.5, we easily have the following:
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Corollary 2.11 Let II, : R? — w be non-degenerate, then
(1) My (A N7y) is an ellipse centered at O < 12 +m? —n? < 0. 10
(2) Uy (S N7y) is a hyperbola centered at O < 12 +m? —n? > 0.
We can then give the following definition:

Definition 2.12 Let II, : R3 — w be non-degenerate. We denote with 6, the conic
def
¢ = (A Nmy). (2.20)

Let us note that
Iy =1y o Hva

if v is non-degenerate. Then, from Claim 2.10, we have:
Corollary 2.13 Let II, : R? — w be non-degenerate. Then
(1) Ty () = ext(6y) if €y is an ellipse, i.c., if 12 +m? —n? < 0.
(2) 1, (#) = int(6,) if €y is a hyperbola, i.e., if 1> +m? —n? > 0.
Remark 2.14 When 12 +m? —n? = 0 it is easy to see that
Iy () = w\{(w,y,())‘l:r%—my:(), m2+y27ép2}. (2.21)
This follows from (2.2) with P € w and [*> +m? —n? = 0. Namely, the equation
2(1xo + myo)t + 12+ y2 = p*. (2.22)
Indeed, from (2.22) we can see that v N =0 iff lx, +my, =0 and 2+ y2 # p?. O

Remembering that 7 = 7 (p), it is also easy to see that:

Claim 2.15 Suppose II, : R?® — w is non-degenerate. If 1,m are not both 0, then €, C w is
central conic, with center O, and major/transverse axis orthogonal to v. More precisely,

1) If 12 +m? —n? <0, then €y is an ellipse, centered at O, with semi azes a, b such that

o n? — 1% —m?

a=p, b =p .

n
2) If 12+ m? —n? > 0, then €y is a hyperbola with transverse semi-axis a and conjugate
semi-axis b such that , , )
+m*—n
a = p, b2 - 2 72 .
n

If l =m =0 the conic 6 C w is merely the circle with center O and radius p.

10 1t follows that II,(H Nmy) is a circle < [ =m =0. See Claim 2.15 and Remark 2.17.
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Proof. We may suppose that
v=MA+nk with A —n?#£0, (2.23)

since the general case follows by rotating v, given by (2.23), around the z-axis.
Then, from (2.11) with [ = 0 and m = A, the intersection % N m is given by the points
P = (z,y,z) € 7y such that

n?z? 4+ (n? — \)y? = n?p°. (2.24)
By (2.23) we have 7y : Ay — nz = 0. This means that P(z,y,z) € # Ny if and only if
n? — \? A
2+ ( 5 ) v =p? 2=y (2.25)
n n

With v as in (2.23) and P(x,y, 2) such that z = 2y, from (2.19) we find

2 )\2
(o) = (o 0 0) 2 @) (2.26)

Hence the coordinates (Z, 7, Z) of the points of €, C w satisfy

—2 n’ —2 2
For A\ # 0, we deduce that

o If \2 —n? < 0, then %, is an ellipse with major semi-axis @ = p and minor semi-axis b
2 2
such that b* = P> ”n;;‘ The major semi-axis, being along the x-axis, is orthogonal to
the direction of projection, i.e., v given by (2.23).

o If A2 —n? > 0, then %, is a hyperbola with transverse semi-axis @ = p and conjugate

. 2 2 o . o
semi-axis b such that b° = p? ’\TZ” The transverse semi-axis, being along the x-axis, is

orthogonal to the direction of projection given by (2.23).

Finally, when A = 0, the conclusion (which formally follows from (2.27) with A = 0) is immediate
because 1y, = T = w. O

Remark 2.16 From (2.25)—(2.26) it also follows that if
v=MA+nk with X\ —n?=0, (2.28)

then the points (z,7,0) of Iy (A Nny) satisfy T2 = p?, § = 0. Hence I, (2 N7y) reduces to
the pair (£p,0,0). For general v = Ii + mj + nk, such that I> + m? —n? = 0, we find

mp —lp
I, (# Nny) ==+ , ,0). O 2.29

v v (\/l2+m2 VI +m? ) .
Remark 2.17 From Claim 2.15 we can see that given a central conic C C w, with center O,
there are a unique p > 0 and, up to symmetry with respect to w, a unique projection direction
(represented by the vector v ) such that

C=1,(#nm) Y%,

Indeed, p must be equal to the major/transverse semi-axis of C (or the radius, if C is a
circle). As for the direction projection, we have:
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e If C is a circle, then the projection direction is given by the vector v = k.

—
e If C is an ellipse with semi-axes OV, OW such that |OV| < |OW| and OV = pi+ qj,
then p = |OW| and the projection direction is given by the vectors

2 2 _ 42

pT—pP —q

v=0pi+dqjtk with d=4—————.
P*(p* + ¢%)

(2.30)

. If_) C is a hyperbola with conjugate and transverse semi-axes OV, OW respectively and if

OV = pi+ qj, then p = |OW| and the projection direction is given by the vectors

2 12 12

. . . pe+p*+q
v=60pi+dgqj £k with 6=4/—————. O 2.31
p*(p* + ¢%) (231

In addition, it is immediate that:

Claim 2.18 In all three cases of Rem. 2.17 the vector v is non-degenerate. '*
Moreover, recalling the Defs. 1.2, 1.3 and 2.6, we have:

Claim 2.19 Let II, : R? — w be non-degenerate. Then

1) If C C Iy () is an admissible conic tangent to 6y, then there are wy—symmetric planes
7, @ through the origin O such that 7,7 }f v and

C=U,(HNr)=1U,(HN7). (2.32)

2) If in 1) we also assume that C is an ellipse or a hyperbola with conjugate semi-diameters
(OP1,0P,), then there are Q1,Q},Qa, Q% € S such that TI;H(P) N A = {Q1,Q}},
I Y(P) N ={Q2,Q4} and (OQ1,0Q2), (0Q},0Q%) are conjugate semi-diameters
of the conics 7 N and A N7, respectively.

3) Conversely, if m is a plane through the origin O such that ™ }f v and € N7y N7 # 0,
then C =11y (2 Nw) is an admissible conic, tangent to 6, .

Proof. 1) Let C be tangent to 4, at X; and let
t be the common tangent of C and %, at X;. (2.33)
Besides, let Xy € C such that OX3}f OX5. Since we assume C C Il (77), we clearly have

X1, Xo € Iy (). (2.34)

1 This is obvious in view of Cor.2.11 and Rem.2.16. But, setting v = li + mj + nk, in the three cases of
Rem. 2.17 it is also easy to see that:

-1 if C is a circle
P+m?—n= ”1%‘12 if C is an ellipse
pthQ if C is a hyperbola
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Thus there are Y7 € 2 N7y and Yy € 57 such that
I, (Y1) = X1, Iy(Y2) = X5 and OYi} OYs. 12 (2.35)

To proceed, let 7 be the plane through the points O, Y1, Ys. It is clear that 7 }f v, otherwise we
would have OX; =1I,(OY1) || IIy(OY2) = OX>. Hence the restriction

IIy| :7m — w defines an affine transformation. (2.36)

By Claim 2.5 (with 7 instead of my)
N (2.37)

is an admissible conic. Then, by (2.36),
0 ¥, (7N
is also an admissible conic and by (2.33) and Cor. 2.13,
X1€Q and QCI,(#) = Q hastangent ¢t at Xj.

This means that Q has in common with C the point X7, the tangent ¢ at X; and a second
point X9 such that OX; }} OX,. Since C and Q are both symmetric with respect to the
origin O, it follows that C = Q = II,( N ). '3 Furthermore, taking into account that . is
my—symmetric, if the plane 7’ is my —symmetric to m we also find

Oy (# N7’y =1,(#Nn)=C. (2.38)

Finally, we note that 7 f v = 7’ }f v, because 7’ || v. = 7/ =7, hence 7 || v (but we can also
observe that (2.38) = 7’ }v).

2) Having already observed that 7, 7’ Jf v, the thesis follows from (2.38) and from the fact that
the restrictions

y| :7—w and Iy| :7' — w are affine transformations. (2.39)
T i

More precisely, by (2.38) and (2.39), we can certainly say that there are Q1, Q2 € S N7 and
1, QY € A N7’ such that

I, (Q1) =11,(Q)) = P, II,(Q2) =I1,(Q5) = P».

Thus the pairs (0OQ1, 0Q2) and (0Q},0QY) are conjugate semi-diameters of the conics . N
and # N 7', respectively. On the other hand, it easy to show that

N (P) N ={Qi,Qj} for i=1,2.

12 Note that Y7 is unique. In fact, assuming X; € %, the line through X; and parallel to v is tangent to
S at a point of S Nm,. Ya is unique up to m,—symmetry, because II;'(X2) N # = {Ya,Ys} with Yz, Y3
my—symmetric; furthermore, Y2 = Yy < X3 € %,. See Claim2.1 and Rem. 2.2 above. Finally, being II, an
affine transformation, it follows that OX; fOX, = OY1 }f OY>.

13 The equation of a conic Q@ C {z = 0} that is symmetrical with respect to O, but which does not pass through
O, can be expressed in the form az? 4 fy* +yry = 1. The coefficients «, 3,v are uniquely determined if (for
instance) we know two points P, P, € Q and the tangent ¢ at one of them, provided OP; }f OP; and O ¢ t (if
O € t then Q does not exist). If PP, || t or P1Ps || t (with P; symmetric to P, with respect to O), the conic is
degenerate. Namely, in this case Q = t Ut/, with ¢’ the symmetric of ¢ with respect to O.
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Indeed, if @Q; # Q) there is nothing to prove, because IIj L(P) N A contains at most two
elements. Conversely, if Q; = Q; = @, then we have @ € 1y because

Qennt and Q¢ny = Q#Q andthen v | QQ | , (2.40)

which is a contradiction. But if Q € 7y, the set II;1(P;) N .# consists of only one element since
the line II;1(P;) is then tangent to ## at Q. See Rem.2.2.

3) Conversely, let m be a plane through the origin O such that = }f v. By Claim 2.5, 2 N7 is
an admissible conic in 7 and since we suppose 7 }f v, it is clear that (2.36) holds.

Thus C = Iy (5 N ) is an admissible conic in w. Moreover, C N %, # () because we assume
A Ny N # (). Taking into account that C C Il (%), from Cor. 2.13 we then deduce that C
and %, are tangent at any point of Il (%” N7y N 7['). |

Remark 2.20 The condition 7 Ny N7 # O, which appears in 3) of Claim 2.19, is certainly
true if at least one of the conics 7 N7y and N7 is an ellipse. For instance, let £ = Ny
be an ellipse. Then

HNmyNm=EN(myNm) # 0, (2.41)

because & is an ellipse in my centered at O and 7y N7 contains a line through O in .

2.4 The case of degenerate ellipses

In Claim 2.19 we have assumed that C C II, () is an admissible conic, tangent to %, . But in
view of the proof of Thm. 1.10 we need also to consider what happen if C is a degenerate ellipse
(in the sense of Def. 1.8) inscribed in %, when %, is a hyperbola.

Claim 2.21 Let II, : R?® — w be non-degenerate and let { C w be a line through the origin O
such that £ N6y # 0. Let ¢ be the plane through £ and parallel to v. Then £ N( is an ellipse
(hyperbola) iff €\ is a hyperbola (ellipse).

Proof. As in the proof of Claim 2.15 it is enough to prove the result for
v=2Aj+nk with X\ —n2#0. (2.42)

Therefore, taking into account formula (2.27), €, C w has equation
2 n? 2 2

Now, by hypothesis, there exits a point L = L(z.,y,,0) € { N%,. By (2.43) the coordinates of
L must then satisfy the relation

n? (22 +y?) — N2a? = (n2 - )\2)p2. (2.44)
On the other hand, (¢ is the plane through OL and parallel to v. Thus ¢ has equation
¢: (nyp)x — (nxy)y + (Azp)z = 0. (2.45)

Noting (2.44), by Claim 2.5, we deduce that:
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2

o ' N(isanellipse & n?>—-X\ <0 & % is a hyperbola;

e N( isahyperbola & n?— X2 >0 & %, is an ellipse. O

Claim 2.22 Given I, : R? — w, let ¢ be a plane through O and parallel to v. Let £ C ¢ be an
ellipse with center O and let 11y (E) = M N, for suitable M, N € wN (.

1) Let (0OQq,0Q)) be a pair of conjugate semi-diameters for €. If Py =1I(Q1) and Py =
I1,(Q2), then we have
IMN[* = 4(|0 P[> + [0 PoJ?). (2.46)

2) If Py, b e wﬁ( satisfy (2.46), then there are Q1, @1, Q2, @2/\6 & such that Y (P)NE =
{Ql,Ql} I;Y(P)NE = {Q2,Q2} and (0Q1, 0Q2), (0Q1, OQ2) are distinct pairs of

conjugate semi-diameters for &.

Proof. 1) To begin with, we introduce orthogonal coordinates h,k in the plane ¢ such that
O = (0,0) and
h?  k? )
S:E—l—b—Q:l with a,b > 0. (2.47)
In this situation it is well known that OQ1, OQ4 are conjugate semi-diameters for £ if and only
if there is 6 € [0,27) such that

Q1= (acos 9,bsin9) and Qo ==+ (asin 0, —bcos 9). 14 (2.48)

Moreover, since II, : R? — w is linear, given a unit vector u such that u || w N ¢, there are
a, € R (not both zero) such that

O—Isi = (acvcosf + bBsinf)u and 51[_’; =+ (aasinf — b3 cosf)u, (2.49)
for all § € [0,27). From (2.49) we immediately have
|OP|? + |OP,|? = (aa)? 4+ (bB)* for all 6 € [0,27) (2.50)

and, in particular,

|OMP? = |ON[* = (aa)® + (b8)?, (2.51)
because II(Q1) = M or N when II(Q2) = O, that is, when OQ); is parallel to the projection
direction v. Hence, from (2.51) we deduce that |[MN|? = 4(ac)? + 4(b3)?, because O = w

2) Conversely, let P, P, € w N ¢ such that the relation (2.46) is true. Before proceeding,
let’s remember that the ellipse £ has oblique symmetry, in the direction of v, with respect to
the line, say [y, through O and parallel to the direction conjugate to that of v. Thus, if

;Y (P)NE={Ri, R} and IIg'(P)NE ={Ry, Ry},

it is clear that the points R; and Ry are obliquely symmetrical (in the direction of v and with
respect to [y ) to R1 and Rg, respectively. In addition, we know that R ARl &S Riel,y
& Pp=Mor N (ie., P, =0, by (2.46)) and, similarly, for the couple Rs, Rs.

1 See [9], p. 39.
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Now, starting for instance from R;, we certainly have
Ry = (acosby,bsinf;) for a suitable 0; € [0,27). (2.52)
By (2.46) and taking into account (2.49) and (2.50), one of the following must hold:
P, = Hv(asinﬂl, —bcos@l) or P = HV( — asin@l,b00801), (2.53)

because in w N ¢ there are only two points at a distance of 1/[MN[2—4|OPi]? from O.
Assuming, for example, that the second of (2.53) holds, we define

Q1 = Ry = (acosfy,bsinfy) and Qy = (—asinf;,bcoshy).? (2.54)

Then, by the condition (2.48) above, (OQ1,0Q2) is a pair of conjugate semi-diameters such
that IIy(Q1) = P; and IIy(Q2) = P». Finally, denoting with @; and Q2 the symmetric to Q)
and @9 respectively, we can easily see that

(0Q1,0Q2) (2.55)

gives a pair of conjugate semi-diameters such that (O@l, O@g) # (0Q1,0Q2). Indeed, let us
suppose, for instance, that @1 = @)1. Then, as we observed above, P = M or N and P, = O.
But, in turn, the condition P, = O implies Q2 # Q2. a

To conclude, we assume that OP;, OP» C w do not both vanish and that OP; || OP,. Then
we consider the degenerate ellipse €p, p, = M N, according to Def.1.8. Applying Claims 2.21
and 2.22, we deduce the following:

Claim 2.23 Let II, : R3 — w be non-degenerate and such that €, is a hyperbola. Besides, let
Ep,,p, = MN be a degenerate ellipse inscribed in 6, and let ( be the plane through MN and
parallel to the projection direction given by v.

Then N is an ellipse, with center O, such that 11, (NC) = Ep, p,. Furthermore, there
are Q1,Q%, Qa2, Q4 € A NC such that I (P) N = {Q1,Q}, ITH(P) N = {Q2,Q4} and
(0Q1,0Q2), (0Q},0Q%) are distinct pairs of conjugate semi-diameters of F N .

Proof. Since M N is a segment through the origin O and M, N € %, by Claim 2.21 we know
that £ = 2 N ( is an ellipse, with center O. Then we can easily see that

Hv(g) = gPl,P2 : (256)

Indeed, assuming Ep, p, = MN inscribed in the hyperbola €., we have: Ep p, C I (E),
because Ep, p, C int(éy), and also Ep, p, D II,(E) because M, N € €, . To proceed, we recall
that £p, p, = M N implies

IMN|? = 4(|OP1|* + |OPs]?). (2.57)
Moreover, we note that

N (PNt =T HP)NE for i=1,2

and that £ has oblique symmetry, in the direction of v, with respect to the line [, = (N 7y. 16
We can therefore apply part 2) of Claim2.22 with £ = # N ¢ and [, = ( N7y and this
immediately gives the thesis. |

15 Clearly, we have Q2 = Ry or Ro.
16 Tt turns out that I, = ( Ny is the line, through O, parallel to the direction conjugate to that of v.
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2.5 Some properties of the tangent planes of .77
Definition 2.24 Given P € 5, we denote with T ,#(P) the tangent plane to S at P.
It Pes#, P= P(xp,yp, 2p), we recall that
Tw(P): xpx + ypy — 2p2 = p°. (2.58)
Claim 2.25 If P,Q € 5 and O is the origin of coordinates, then
OP | T (Q) < 0Q| Tw(P). (2.59)
Proof. Indeed, given P = P(zp,yp, zp) € J and Q = Q(xq, Yo, 2q), we have that
0Q | TH(P) &  wpwq+ Yoy — 2p2g =0, (2.60)

But the last condition of (2.60) is symmetric with respect to P and @ if P,Q € J2. O

Taking into account the oblique symmetry of 7 with respect to the plane 7y, (Def. 1.2), applying
Claim 2.25 we easily get the following:

Corollary 2.26 If P,Q € s and P',Q’ are my—symmetric to P,Q respectively, then
OP | T»(@Q) & OP' | Tx(Q) (2.61)

and
OP | (@) & 0Q| Tu(P). (2.62)

Proof. Recalling Def. 2.3 and Rem. 2.4, we easily have

Sv(Tr(Q)) = T (@), (2.63)
where S, is the oblique symmetry with respect to the plane 7y, in the direction of v. This
immediately gives (2.61). Then (2.62) follows from (2.61) and Claim 2.25. O

Definition 2.27 Assuming OP }f OQ, we denote with (O, P,Q) the plane through the origin O
and the points P,Q. With € (P, Q) we indicate the admissible conic

¢(P,Q) Y #n(0,PQ). (2.64)

Moreover, given R € €(P,Q), we will denote with Ty (pg)(R) C (O, P,Q) the tangent line to
€ (P, Q) passing through the point R.

Remark 2.28 By (2.58) and (2.60), if P € S then OP J Ty (P). More generally,
P,Qe A and OQ | Tw(P) = OP}0Q, (2.65)
because OP || OQ = OP || Ty (P). Further, if OP  OQ and R € S then
Tw(R) N (O, PQ)#0 = Tx(R)k(O,PQ), (2.66)

because, by (2.58), O & Ty (R). In particular, this implies that the plane (O, P,Q) has always
transverse intersection (i.e., it is never tangent) with the hyperboloid €.
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Claim 2.29 Suppose P,Q € . Then OP || Tx(Q) < OP }f OQ and €(P,Q) = 5 N
(O, P,Q) is an ellipse with (OP, OQ) as a pair of conjugate semi-diameters.

Proof. = By the first part of Rem.2.28, we already know that OP J OQ. This implies
that € (P,Q) = 2 N (O, P,Q) is an admissible conic in the sense of Def.2.6. In particular,
¢ (P, Q) admits tangent line in each of its points. Besides, by the second part of Rem.2.28,
Tw(Q) f (O, P,Q). Hence we deduce that the tangent line Tz (p,g)(Q) satisfies

Ty p)(Q) =T (Q) N(O, P,Q), (2.67)

because it is clear that Ty (pg)(Q) C T (Q) and that Ty po)(Q) C (O, P,Q).
Then, since OP || (O, P, Q) and we suppose OP || T »(Q), it follows that

OP || T¢(p)(Q)- (2.68)

Moreover, by Claim2.25, OP || T»(Q) < OQ || T (P). So with the same arguments used
above we can prove that

0Q || Te(pg)(P)- (2.69)

From this we deduce that % (P, Q) must be an ellipse, because (2.68) and (2.69) cannot both
be true if (P, Q) is a hyperbola or a pair of distinct, parallel lines which are symmetric with
respect to the origin O. 7 Having proved that €' (P,Q) is an ellipse, again from (2.68) and
(2.69), we deduce that (OP,0Q) is a pair of conjugate semi-diameters.

< The inverse implication is immediate from the properties of semi-diameters of an ellipse. O

To proceed, taking into account Defs. 1.5, 1.8, we can state the following;:

Claim 2.30 Let I, : R?® — w be a parallel projection. Let Q1,Qz € S such that OQ1 || T (Q2)
and let Py =11,(Q1), P, =11y(Q2). Then we have:

(1) If OPy }y OP;, then 11 0.01.08) :(0,Q1,Q2) — w defines an affine map such that
s 1,2

I (€ (Q1,Q2)) = Ep,,p, - (2.70)
If we further suppose that 1l is non-degenerate, then Ep, p, is tangent to 6.

(2) If OPy||OP,, then 11, (€ (Q1,Q2)) is the degenerate ellipse Ep, p, determined by the seg-
ments OP;,OPs. If we further assume that Il is non-degenerate, then %€, is necessarily
a hyperbola and €, circumscribes Ep, p, (in the sense Def. 1.8).

Proof. By Claim2.29, we already know that OQ; }f OQ2 and that €' (Q1,Q2) is an ellipse
with conjugate semi-diameters OQ1, OQ2. Besides, having I, (Q1) = P, IIy(Q2) = P» with
0Q1 ) OQ2, the segments OP;, O P cannot both vanish. Hence we may consider the (eventually
degenerate) ellipse Ep, p,.

2

7 If €(P,Q) is an hyperbola, just note what happens for # : 2—2 — ¥ = 1. Given Q = (x4,y4) € H and
P = (zp,yp), it follows that OP || Tx(Q) iff <452 — Y42 = 0. This means that =, = k%, y, = k=% for some

2 2 2 2
k € R. But then Z—g — ly)—g = %(i—g — Z—g) = f%. Thus P ¢ H regardless of the value of k. If (P, Q) is a pair

of distinct, parallel lines which are symmetric with respect to O, it is obvious that (2.68), (2.69) cannot hold.
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(1) In this case, we have that
OP fOP, and IIy(Q1) = P, IIy(Q2) =P = v §(0,Q1,Q2). (2.71)

So the restriction

II : (0, Qq, —
Y1(0,01,Q2) (0,Q1,Q2) = w

defines an affine transformation. Having II,(0OQ1) = OP; and II,(0Q2) = OP,, it is therefore
clear that (2.70) holds. Next, we define

l: <O)Q17Q2> ﬁ7TV'

Noting that [ is a straight line through the origin O in (O, Q1,Q2), or all plane (O, Q1,Q2), it
is clear that

C(Q1,Q2) N1 #0, (2.72)
because €' (Q1,Q2) = # N {(0,Q1,Q2) is an ellipse, centered at O, in (O, Q1,Q2). Hence
¢ (Q1,Q2) N (H Nmy) = A N(0,Q1,Q2) Ny =C(Q1,Q2) N1 # 0. (2.73)
This, in turn, implies that
Ep,p NIy (A Nwy) =11,(€(Q1,Q2)) Ny (A Nmy) # 0. (2.74)

Then, if we suppose II, is non-degenerate, (2.74) gives
Ep.p, NEy # 0. (2.75)
By Cor.2.13, €p, p, and €y are therefore tangent at any point of Ep, p, N6y .

(2) Assuming OP; || OP, it follows that ¢ = (O, Q1,Q2) is the plane through O, P;, P, and
parallel to the vector v. We can then apply part 1) of Claim 2.22 with £ = €(Q1,Q2). It easily
follows that

I, (¢ (Q1,Q2)) = MN = Ep, p,, (2.76)

because we already know that OQ1,0Q2 are conjugate semi-diameters of €' (Q1,Q2) and, by
(2.46), we have |[M N> =4(|O P> + |0 P»}?).

To proceed, since €(Q1,Q2) is an ellipse in ¢ = (O, Q1,Q2), we can prove as in case (1)
above that Ep, p, N1l (%ﬂ N 7Tv) # (). If we now suppose Il is non-degenerate, we have

MNN%, #0. (2.77)

This means that the line ¢ through M, N is a line through O such that £ N%, # (0. Then,
applying Claim 2.21, we see that %, must be a hyperbola, because € (Q1,Q2) = # N is an
ellipse. 1® Finally, €, circumscribes Ep, p,. In fact, we have shown above that MN N %, # 0
and, by Cor.2.13, we know that M N C int(é,). So we have M, N € €, since M, N (as well
%) are symmetrical with respect to the origin O. a

Remark 2.31 Under the assumptions of (1) of Claim 2.30 and taking into account Defs. 2.7,
2.8 and Cor. 2.13, if the projection 1lly is non-degenerate we can also say that:

o %y is inscribed in Ep, p,, if €y is an ellipse. In particular, we have 6y = Ep, p, if and

only if ™ = (0, Q1,Q2).

e ¢, circumscribes Ep, p, if 6y is a hyperbola.

'8 Noting (2.76), we may deduce directly from Cor.2.13 that %, must be a hyperbola. In fact, we have
O € MN C II,(#) and this means that 4, cannot be an ellipse.
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3 Hyperbolic Pohlke’s projection in the circular case

In this section we will explicitly determine the hyperbolic Pohlke’s projection II, : R?* — w when
in Def. 1.4 we also assume that two of the segments OP;, OP,, OP; are equal and perpendicular.
Before proceeding we recall that, according to Def. 1.2, the points P, P’ are my,—symmetric if
P, P' are obliquely symmetrical with respect to the plane my, in the direction of v. That is,
P' = 8, (P) where Sy is the map introduced in Def. 2.3. Moreover, if IT, : R® — w is a hyperbolic
Pohlke’s projection in the sense of Def. 1.4, we note that:

Remark 3.1 Considering the symmetries Sy, with respect to my, and Sy, with respect to the
plane my = w (i.e. the usual symmetry with respect to w), it is immediate to see that:

o If Q1,Q2,Q3 € I satisfy the conditions (1.13), (1.14) of Def. 1.4 then, by Cor. 2.26, also

the points Q) = Sv(Q1), Q5 = Sv(Q2) Q% = Sv(Q3) satisfy (1.13),(1.14). This means
that in Def. 1.4 the triads Q1,Q2,Q3 and Q},Q%, Q5 are perfectly equivalent.

e Let us denote with II, : R3 — w the symmetric projection with respect to w, i.e.,
I, (P) = I, (Sk(P)) for P € R (3.1)

Then Ily, with the points Si(Q1), Sk(Q2) and Sk (Q3), still gives a hyperbolic Pohlke’s
projection for OPy,OPy, OPs. Observe also that if v = Sx(v), then

HV = H(, and H(,(jf N 71"7) = Hv(% N 7Tv). (32)

3.1 The circular case

We consider here the problem of determining the hyperbolic Pohlke’s projections II, : R3 — w
in the circular case. More precisely, for OP;, OP», OP3 C w such that

OP1 1 OP2 and |OP1’ = |OP2‘ =1. (33)

To begin with, according to Def. 1.4, we need to find I, : R®> — w non-degenerate and then
Q1,Q2 € H(p) such that

IIy(Q1) = P, IIy(Q2) = P> with OQ1 || T (Q2).

Assuming such a projection exists, from (1) of Claim 2.30 we deduce that £p, p, must be tangent
to ¢y. Since &p, p, is the circle with center O and radius r = 1, we have two possibilities:

e If €, is an ellipse (circle), having to be inscribed in &p, p, (by (1) of Cor.2.13), ¢, must
have semi-major axis a = 1 (radius r =1).

e If €, is a hyperbola, having to circumscribe &p, p, (by (2) of Cor.2.13), %, must have
transverse semi-axis a = 1.

Then, from Claim 2.15 and Rem. 2.17, we conclude that:

Claim 3.2 If (3.3) holds and if there is a hyperbolic Pohlke’s projection for OP;,OPy, OP;
(according to Def. 1.4), then p = 1. That is, we have

%:%(1):{(m,y,z)eR‘g‘xQ—&—yz—zQ:l}. (3.4)
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After this, again assuming that the hyperbolic Pohlke’s projection II, exists, we note that (3.3),
(3.4) imply Py, P» € 5. Thus we must have:

P1 = Ql or Qll and P2 = QQ or Q/2 19 (35)
But to satisfy the conditions of Def. 1.4 it is necessary to set
Q1 =P and Q2 =P, (3.6)

or, equivalently, @} = P and Q) = P,. 2" In fact, if we set Q1 = P; and Q) = P», applying
Cor. 2.26, we find:

0Qs || T#(Q1) & 0Q1 || Tx(Q3) & OP1 | Tr(Q3), (3.7)

OQ2 | T#(Q3) & 0Qs | Tw(Q5) & OP: || T (Q5). (3.8)

Now, from (2.60), it is easy to see that
OPy || Ty (Q3) and OP; || Ty (Q3) = OQ5 Lw* (3.9)

and the latter condition cannot be satisfied if Q4 € 7. Since the same argument works if we try
to define Q) = P, and Q2 = P», we are forced to assume (3.6). Moreover, by choosing Q1 = P,
and Q2 = P», we must also have

Qs # Q5. (3.10)

Indeed, if Q3 = Qf, from Cor. 2.26 and condition (1.14) we easily deduce that OP; || T (Q3)
and OP» || T»(Q3). Hence, as in (3.9), we find OQ3 L w which cannot be satisfied. In
conclusion, noting that (3.10) implies Q3Q% || v, we can say that:

Conditions 3.3 Having fixed the points Q1 = Py, Q2 = P5 as in (3.6), to have a hyperbolic
Pohlke’s projection for OPy,OP,,OPs as in (3.3), it is necessary and sufficient to determine
Qs3, Q4 € A (1), Q3 # Qf, such that the following conditions are true:

(a) OPy | T (0Q3) and OPy || T (0Q%) (ie., OQs || Tx(OP]), by Cor.2.26);
(b) Q3Q%5 }fw, because Q3Q% gives the direction of projection onto w;

(¢) Qs, Qf, P are collinear (ie., 1I,(Q3) = I1,(Q%) = Ps);

-
(d) v= Q3Qf gives a non-degenerate projection direction.

19 Given Q € 7, by (2.60) we have OP || T#(Q) < zpzq+ ypyg — 2p2q = 0. Therefore, if Py, Py € w are
such that OP; L OPQ7 then OP; || ij’(PQ) and OP; || T%(Pl)

20 In the following will not distinguish between these two possibilities because, by Rem. 3.1, we know that the
triads Q1, @2, Q3 and Qf, Q%, Q% are equivalent.

2L Given Q = (2q,Yq,2q) € # and Py, P> € w such that OP; }f OP,, we have that OP1, OP; | T#(Q) <
g = yo = 0. But the latter condition is equivalent to OQ L w.
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3.2 Explicit determination of II, in the circular case

To proceed, we may suppose that the coordinate axes x,y are oriented in space such that

1 0 T
P1 = 0 5 P2 = 1 and P3 = Yy . (311)
0 0 0

In particular, in this system we have

OP, = 2 OP, +yOP;. (3.12)

Then, taking into account (2.60), we see that (a) in Cond. 3.3 is satisfied iff Q3 € . N{y =0}
and Q4 € 2 N{z =0}. Thus we can express Q3 and ()5 in the form

cosh™« 0
Q3 = 0 and Q%= | cosh*j (o, B €R), (3.13)
sinh a sinh

where, for simplicity, we have set

cosh*t & & cosht. 22 (3.14)
Having (3.13), it is clear that Q3 # Q% and that (b) in Cond. 3.3 holds iff
sinh v # sinh 3. (3.15)

—
Besides, (¢) of Cond. 3.3 is verified iff P3 = Q3 4+t Q3Q%5 for some t € R. That is,

x cosh™« —cosh*a
y | = 0 +t cosh™3 for some t € R. (3.16)
0 sinh « sinh # — sinh «

Now, assuming that (3.15) holds, we will first study the solvability of the system (3.16) and
then we will verify if also (d) of in Cond. 3.3 is satisfied, i.e., if the projection direction found is
non-degenerate. We will distinguish two cases to this aim:

3.3 Case OP; || OP, or OP; || OP;

Suppose first OP; || OPF», that is x = 0. Since cosh*a # 0, the first equation of (3.16) gives
t = 1. Then, considering also the third equation, we find sinh 8 = 0. Thus cosh*8 = +1 and
sinh  # 0. Summarizing up, when = = 0 system (3.16) is solvable iff

0
Ps=+| 1. (3.17)
0

22 Just to have a simple parametrization of the entire hyperbolas 2 N {y = 0} and 2 N {z = 0}, suitable for
subsequent calculations.
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If (3.17) holds, then we have

cosh*a
Q3 = 0 with o #0, Q5= Ps. (3.18)
sinh «
——
Noting that the projection direction is given by v = Q3Q% = —(cosha)i £ j — (sinha)k,

condition (d) is certainly true because (cosh* a)? + 1 —sinh? &« = 2. In conclusion, when 2 = 0
there are no hyperbolic Pohlke’s projections if (3.17) fails, infinitely many if (3.17) holds. O

Now suppose OP; || OP;, that is y = 0. Reasoning as in the previous case, we find that when
y =0 (3.16) is solvable iff

1
Pa==+| 0 |. (3.19)
0
If (3.19) holds, then we have
0
Q3 =P;, Q3= cosh*p with 8 # 0. (3.20)
sinh 3

o
As above, (d) of Cond. 3.3 is true because v = Q3Q4% = £i+ (cosh*f)j + (sinh 8) k. Thus
there are no hyperbolic Pohlke’s projections if (3.19) fails, infinitely many if (3.19) holds. |

Summing up, taking into account Cond.3.3, we have proved that:

Lemma 3.4 If (3.8) is verified and OPs||OP; (or OPs|| OP,) then there are infinitely many
hyperbolic Pohlke’s projection for OPy, OP,, OPs if |OPs| =1, none if |OPs| # 1.

3.4 Case OP; f OP, and OP; }t OP,, that is z,y #0
We note first that the condition z,y # 0 in (3.16) implies
sinha, sinh 8 # 0. (3.21)

Indeed, if sinha = 0, (3.15) and the third equation of (3.16) give ¢ = 0. Then the second
equation of (3.16) implies y = 0, contrary to our assumption. Similarly we find that sinh 8 # 0.

Taking into account this fact, we deduce now a set of necessary conditions for the point Ps
to be collinear with Q3, Q% (i.e., to satisfy (3.16) for some ¢t € R) when (3.15) and (3.21) hold.
After that, we will prove that these conditions are also sufficient.

Assuming that (3.16) is true, by (3.15) and the third equation of (3.16), we have

sinh «
t= ——m—. 3.22
sinh oo — sinh 3 ( )

From (3.21) it follows that ¢ # 0,1 and that

cosh*a sinh o
h* — = + h*a: 2
T cosn « o Si ] T 0, cosn & (3 3)

cosh™f3 sinh «
= h*3. .24
Y= sinha— sinh 3 = y7# 0, cosh’3 (3.24)
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Then . Y
=1. 3.25
cosh™a + cosh*3 (3.25)
From (3.24), (3.25) we obtain
. x cosh* 3
cosh"oo = ———,
cosh™ — vy (3.26)
. ysinh 3 )
sinhao = ————— |
y — cosh™f3

because, by (3.24), we know that y # cosh*f3.
Next, since (cosh*a)? — sinh? a = 1, from (3.26) we have

x%(cosh*B)? — y?sinh? B = (y — cosh* )% (3.27)
Hence, simplifying the expression above, we find
{(xz —y? — 1) cosh*f + 2y} cosh™f = 0. (3.28)

Since cosh* # 0 and (by (3.24)) y # 0, we deduce that:

22 —yP—1+40, (3.29)
and then 5
* )
h"f = ——2F——. 3.30
cosh*3 P — ( )

Noting that x # 0, cosh®a (see (3.23)) by similar arguments we can derive that

Yy’ -2 =140 (3.31)
and 9
—2z
h*a = —F—. 3.32
cosh*a g (3.32)

Finally, since (3.21) is equivalent to |cosh*a| > 1, |cosh*f| > 1, from the expressions (3.30),
(3.32) we deduce the conditions:

2x
—r2_1

2y
2 —y2 -1

(4)

2

‘>1 and (i)

> 1. 3.33
o

Summing up, we have:

Claim 3.5 If (3.15), (3.21) are verified and if P3 = *(x,y,0) is given by formula (3.16), then
the necessary conditions (3.29), (3.31) and (3.33) are satisfied.

Definition 3.6 We will denote with X the subset of R? where (3.29), (3.81) hold, i.e.,
S (2, y)] 2 —y? £ £1). (3.34)

The solution region of (3.33) is given by the following:



24 ON POHLKE’S TYPE PROJECTIONS IN THE HYPERBOLIC CASE

Lemma 3.7 A pair (z,y) € X satisfies the conditions (3.33) (i) and (ii) iff
|| + |yl >1 and H:c\ — \yH <1 (3.35)

or, equivalently,
z4+y+)(z+y—1)(z—y+1)(r—y—1)<O0. (3.36)

Proof. The inequalities of (3.33) is invariant under symmetry with respect to the coordinate
axes, i.e., on replacing (z,y) with (+z,+y). So it is sufficient to solve (3.33) for z,y > 0.
Besides, we can obtain the first of (3.33) from the second, and vice versa, by permutation of the
variables z, y. Hence it is sufficient to solve the second inequality of (3.33).

To begin with, for (z,y) € X with x,y > 0, inequality (3.33) (i7) is equivalent to

2 <y’ —2®—1< 2z, (3.37)
that is
(x—1)2<y?> <(z+1)>2% (3.38)
which, in turn, is equivalent to
lz -1 <y<z+1, (3.39)

because x + 1 > 0 and y > 0. Next, it easy to see that
{(x,y) ‘ lz -1l <y< a:+1} = {(x,y)‘x—i—y >1, |z -yl < 1} C {x,y > 0}. (3.40)
Thus, for z,y > 0, the solution region of (3.33) (i) is given by
Q=Yn{(zy|z+y>1, [z—yl <1} (3.41)
The set 2 in (3.41) is symmetric with respect to x, y. By the previous considerations, € gives
also the solution region of (3.33) (i) for z,y > 0 and, taking into account the symmetry with

respect to the axes, from this we immediately obtain (3.35). Finally, it is easy to verify the
equivalence of (3.35) and (3.36), because they define the same subset of R x R. O

So far, we have proved that:

Claim 3.8 If the conditions (5.15), (5.21) are verified and if P = '(z,y,0) is given by (3.16),
then (z,y) € X and

g(x,y) def (r+y+Dx+y—1)z—-y+)(z—y—-1)<0.23 (3.42)
The converse is also true:

Claim 3.9 If a point P ='(z,y,0) is such that (x,y) € ¥ and (3.42) holds, then P is given by
formula (3.16) for suitable o, 5 satisfying (3.15), (3.21).

23 Note that condition (3.42) implies z,y # 0.
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Proof. Let us suppose that (x,y) € X satisfies (3.42). Then, by Lem. 3.7, there are (unique
except for the sign) a, 8 such that
* —2z * _2y
cosh*a = B and cosh*f = promy g (3.43)
Since |cosh*t| > 1 = sinht # 0, condition (3.21) is certainly verified. With cosh*a, cosh*j
such that (3.43) holds, the first two equations of (3.16) are satisfied by

2 2
— 1
t = ymem Al ] (3.44)
2
Then, with ¢ as in (3.44), the third equation of (3.16) is verified iff
sinh 8 y?—a2? -1
S N —— 4

sinh «v x2—y2 -1 (345)

Now, introducing the expressions (3.43) inside the identity sinh?t = (cosh*t)? — 1, we obtain

9(x,y)
(22 =2 —1)2°

9(x,y)

. 19 B
m and sinh B = —

sinh?a = —

(3.46)

where g(z,y) is the quantity defined in (3.42). Since we are assuming g(z,y) < 0, we may
conclude that (3.45) holds iff

(sinha, sinh B) = + ( V=9@.y) v _g(x’y)) (3.47)

2210 22— y2 1

Finally, it remains to note that for (z,y) € X the relation (3.45) gives also the inequality
sinh o # sinh 3, i.e., condition (3.15). In conclusion, we have proved that there are «, 8 such
that both conditions (3.15), (3.21) hold and P = !(z,y,0) satisfies formula (3.16). 0

Recalling (3.13), (3.43) and (3.47), we may conclude the following:

Claim 3.10 Let us suppose x,y # 0. Then system (3.16) with condition (3.15) is solvable <
(z,y) € X and (3.42) holds. Moreover, if (x,y) € X and (3.42) holds,

1 —2x
Qs = P 0
v/ —g(z,y)
with § = +1, (3.48)
0
Q !

22241
Y 6/ —g(x,y)

where g(z,y) is the function defined by (3.42).

Proof. As we have already observed at the beginning of section 3.4,

z,y #0 and (3.15), (3.16) — (3.21). (%)
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Therefore, it is sufficient to apply Claim 3.8 and Claim 3.9. O

The previous statement gives the necessary and sufficient conditions for the existence of
@3, Q% such that (a), (b), (c¢) of Cond. 3.3 hold, i.e., such that there is a projection Il satisfying
(1.13) and (1.14) of Def. 1.4, when (3.3) holds and P3 = !(z,y,0) with z,y # 0.

So, in order to have a hyperbolic Pohlke’s projection, it only remains to verify if (d) of Cond. 3.3
holds when @3, Q% are given by (3.48). To this end, noting (3.13), we write:

—_—
v = Q3Q% = —(cosh*a)i+ (cosh*B)j + (sinh 8 — sinh a)k, (3.49)
with cosh®a, cosh®( as in (3.43) and sinh «, sinh 8 as in (3.47). Then we have:

Claim 3.11 Let P; = Y(z,y,0) with (z,y) € ¥ such that (3.42) holds. Then the projection
direction v = li+mj + nk given by (3.49) satisfies

22 +y? -1

12 2 opl=q -7 -
+m n (:c2—y2)2—1

(3.50)

Proof. Assuming (x,y) € X and (3.42), the expressions (3.43) and (3.47) are well defined real
numbers. Then writing v as in (3.49) and using (3.47), we find that
1> +m? —n? = (cosh*a)? 4 (cosh*)? — (sinh B — sinh a)?
= 2(1 + sinh « sinh 6)

_ 9(,y)
e ] 51)
_5 [1 - g(z,y) ]
(z2 —y2)2 — 1
x? 21
g °

Finally, taking into account Rem. 3.1, Claim 3.2, Cond.3.3 and summing up, we have:

Lemma 3.12 If (3.3) is verified and if OPs }f OP;,OPs, then there is a hyperbolic Pohlke’s
projection 1y for OPy, OPs, OPs if and only if

OP, — zOP, +yOP,, (3.52)
with (x,y) such that (3.42) holds and
fa,y) = @2+ y? = 1)@ =y — 1)@ — > +1) £0. (3.53)

If the conditions (3.42) and (3.53) are verified, then the hyperbolic Pohlke’s projection Il
is unique up to symmetry with respect to the plane w. The conic G\ is unique and Gy is an
ellipse if f(x,y) <0, while €, is a hyperbola if f(x,y) > 0.

Proof. Let us first note that

fx,y) #0 < (z,9) €Y and 2% +9y* # 1. (3.54)
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Suppose now that (3.42), (3.53) are true. Then the existence of a projection Il : R3 — w
satisfying (1.13), (1.14) of Def. 1.4 follows from Claim3.10. Thanks to Claim3.11 and (3.54),
the condition f(z,y) # 0 also implies that (d) of Cond. 3.3 is true, i.e., II, is non-degenerate.
Hence 11, is a hyperbolic Pohlke’s projection for OP;,OP,, OP;.

Conversely, let II, be a hyperbolic Pohlke’s projection for OP;,OP,,OP;. Taking into
account Cond. 3.3 and the arguments at the beginning of Section 3.2, we deduce from Claim 3.10
that (z,y) € ¥ and (3.42) holds. Furthermore, the points Q3, Q% are necessarily given by (3.48).
Since II, is non-degenerate, (3.50) of Claim.3.11 gives 22 + 42 # 1. By (3.54) we can finally
see that also (3.53) holds.

As for the uniqueness of Il , we recall that by Claim 3.2 we necessarily have p = 1, that is

S = ' (1). Furthermore, the vector v = Q3Q% , given by Claim 3.10, is uniquely determined
up to choosing the plus and minus sign in formula (3.48). This means that we can obtain only
two projections, IT, and Il,, which are symmetric with respect to the plane w (according to
the second part of Rem.3.1). Hence, taking into account that J# = (1), from (3.2) we may
conclude that &, = I, (2 N my) is unique. Finally, assuming that the hyperbolic Pohlke’s
projection exists, by Cor.2.11 and (3.50) above, the conic %, is an ellipse or a hyperbola
depending on whether it is f(z,y) > 0 or f(z,y) <O0. O

4 Proof of Theorem 1.7

(1) = (2). It is sufficient to apply part (1) of Claim 2.30 first and then Cor. 2.13.
Indeed, since we are assuming OF; }f OP; (1 < i < j < 3) by the conditions (1.13), (1.14) of
Def. 1.4 and part (1) of Claim 2.30, we have:

IIy(Q1) = P1, II,(Q2) = P> and OQq || Tw(Q2) = I, (€ (Q1,Q2)) = Ep, P, (4.1)
My(Q2) = P, 1Iy(Q3) = P3 and OQ2 || T (Q3) = IIy(¢(Q2,Q3)) = Ep, P, (4.2)

and, noting that II,(Q}) = Py,

y(Q3) = P3, Iy(Q1) = P and OQs3 | T (Q)) = Ty(4(Q3,Q1)) = Epyp,.  (43)
Furthermore, Ep, p,, €p,.p,, Epy,p, are tangent to
Cv =1y (A Nmy). (4.4)
Then, since Ep, p,, Epy Py, Epy,p, C Iy (), by Cor. 2.13 we finally deduce that:
e ¢, is inscribed in Ep, p,, Ep,.py, Epy,py if €y is an ellipse;
e &, circumscribes Ep, p,, Ep,.p;, Epy,p, if €y is a hyperbola.

In conclusion C = %, is a hyperbolic Pohlke’s conic for OP;, OPs, OP;5.

(2) = (1). This implication can be obtained by first applying Claim 2.15, Rem. 2.17 and then
Claim 2.19 and the result of Appendix A, in particular Claim A.1.
Indeed, let C be a hyperbolic Pohlke’s conic for OP;,OP,,OPs. We fix ¢ = 7 (p) with

p = major/transverse semi-axis of C (p = radius, if C is a circle). (4.5)



28 ON POHLKE’S TYPE PROJECTIONS IN THE HYPERBOLIC CASE

Then from the three cases of Rem. 2.17 we obtain, up to symmetry with respect to the plane w,
the projection direction, i.e., the vector v. Moreover, by Claim 2.18, v is non-degenerate.
This means that we can realized C as a projection of a section the hyperboloid 72 = J#(p).

More precisely, we have:

C=I,(#nm) ¥ &, (4.6)

After that, we consider £p, p,, Ep, p, and Ep, p,, which are tangent to €, by Def. 1.6. Starting
with €p, p,, by 1) of Claim 2.19 there is a plane 7, through the origin O, such that JZ N is
an ellipse and Iy (2 N7) = Ep, p,. 2* Then, by 2) of Claim2.19, there are Q1,Qs € S N
such that II(Q1) = P1, II(Q2) = P» and OQ1,0Q2 are conjugate semi-diameters of the ellipse
S N . This later fact implies OQ1 || Tz, ,@,)(Q2). Then

0Q1 || Tg(Q,,0,)(Q2)  and  Tig(q, g,)(Q2) C Tor(Q2) = OQ1 || Tor(Q2), (4.7)

So the first condition of (1.14) is satisfied. To proceed further, we consider £p, p,. Again from
1) and 2) of Claim 2.19 we can find a plane 7, through O and @2, such that N7 is an ellipse
and Il (# N7) = Ep, p,. Besides, we can also find a point Q3 € # N7 such that II(Q3) = Ps
and OQ2,0Q3 are conjugate semi-diameters of . N 7. As above, we deduce that

0Q2 || T (Qs3). (4.8)
So, the second condition of (1.14) holds. Finally, we consider the ellipse Ep, p,. Noting that
IH(P) Nt ={Q1,Q1}, (4.9)
and reasoning as above, it is clear that at least one of the following must be true:
0Qs | T (Q1) or OQs || T (Qh). (4.10)
But, by Claim A.1, we cannot have the sequence
0Q1 | T (Q2), OQ2 || T (Q3) and OQs || Ty (Q1), (4.11)

with @1, Q2, Q3 € S . Hence the second (and only the second) of (4.10) is true. In conclusion,
we have found Q1, @2, Q3 € # such that (1.13) and (1.14) hold.

4.1 The equivalence of (1),(2) with (3)

To prove that (1),(2) < (3) when OP;, OP,, OP5 are non-parallel, we resort to an appropriate
circular case. More precisely, let N1, No € w such that

ON1 L ON2 and ’ONl‘ = ’ONQ‘ =1. (412)

Since OP; }t OP,, we may consider the affine transformation ® : w — w defined by

s —  de —
DO +20P, +yOP,) ¥ 0+ 20N, +yON; for z,y€R. (4.13)

24 From (2.36) we know that H\,|7r : T — w is an affine transformation. Hence J# N m must be an ellipse.
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It is clear that ®(P;) = Ny, ®(P;) = Na. Besides, if OP3 = hOP; + kOP,, then

N ¥ o(Py) = 0+ hON, + k ON. (4.14)
Hence
ON3 =hON; +kONy and ONj ,H ON1, ON, (415)

because OPs f OP1,0P, (i.e., h,k #0).

As it is known, an affine transformation maps conjugate semi-diameters of a central conic
into conjugate semi-diameters of the transformed conic. This means that ®(Ep, p,) = Eny Ny,
®(Ep,.p,) = Eny, Ny and ®(Ep, p,) = Eny, N,. Besides, if C is a hyperbola (ellipse), with center
O, which circumscribes (is inscribed in) Ep, p,, €p, Py, Eps,p,, then &(C) is a hyperbola (ellipse)
centered at O which circumscribes (is inscribed in) En, Ny, Eny, Ny> ENg N, - The converse is also
true, because @1 : w — w is still an affine transformation. Hence, according to Def. 1.6, we can
state the following:

Claim 4.1 If C is a hyperbolic Pohlke’s conic for OP;,OPs,OPs, then ®(C) is a hyperbolic
Pohlke’s conic for ON1,ONs, ON3, and vice versa.

(1),(2) = (3). Now let us suppose that (2) holds, namely that there is a hyperbolic Pohlke’s
conic C for OP;,0OP,,OP;3. Then

Co =®(C) (4.16)
is a hyperbolic Pohlke’s conic for ON1,ON2, ON3. Hence, having already proved that (1) <
(2), there is a hyperbolic Pohlke’s projection for ON;,ON2, ON3. By (4.12) and (4.15) we

can therefore apply Lem. 3.12 to ONy, ONo, ON3. Thus we conclude that h, k must satisfy the
conditions (1.15) and (1.16).

(3) = (1),(2). Conversely, let us suppose that (3) hold, i.e., h,k satisfy the conditions (1.15)
and (1.16). Then, by Lem. 3.12, there is a hyperbolic Pohlke’s projection for ONy, ONa, ONs .
By the equivalence (1) < (2), we deduce the existence of a hyperbolic Pohlke’s conic, say C,,
for ONl, ONQ, ON3 Then,

C=aC,) (4.17)

is a hyperbolic Pohlke’s conic for OP;, OP», OPs;. Thus we have proved that (2) holds.

4.2 Uniqueness of II,,C and conic type of C

The uniqueness properties of hyperbolic Pohlke’s conic C and of hyperbolic Pohlke’s projection
11, follow immediately from the circular case studied in Section 3. In fact, if we assume condition
(3.3), by Claim 3.2 we necessarily have p = 1, that is . = #(1). Besides, by Lem. 3.12, the

projection direction, given by the vector Q3Q% in (3.49), is unique up to symmetry with respect
to the plane w. That is, we have:

vi] vy or v|ve with vy =10+ mj+ nk, (4.18)

for suitable I, m,n such that n # 0 and 12 + m? — n? # 0. Therefore we have the uniqueness of
the hyperbolic Pohlke’s conic in the circular case, because

C=1I,, (nny,)=1, (A Nmy_). (4.19)
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Having proved the uniqueness in the circular case, applying the affine transformation ® : w — w
introduced un (4.13), we deduce the uniqueness of the hyperbolic Pohlke’s conic in general. As
for the hyperbolic Pohlke’s projection II, : R?® — w, it is enough to recall that the hyperbolic
Pohlke’s conic C uniquely determines the hyperboloid % = 7 (p) and, up to symmetry with
respect to the plane w, the projection direction v. See Rem.2.17.

Finally, since C and ®(C) are conic of the same type, by Lem.3.12 it is clear that the
hyperbolic Pohlke’s conic C is an ellipse if f(h,k) < 0, while it is a hyperbola if f(h,k) > 0.

5 Proof of Theorem1.10

We will first show that the equivalence (1) < (2) of Thm. 1.7 remains valid under the hypotheses
of Thm. 1.10, if we allow degenerate ellipses, in the sense of Def. 1.8, and if we replace Def. 1.6
with Def. 1.9 as hyperbolic Pohlke’s conic definition.

According to the hypotheses, we will assume that OP;, OP,, OP; are not contained in a line,
but two of them are parallel to each other. More precisely, in the following we will suppose that

OP1 HOPQ and OPQ H OP3. (51)

(1) = (2). We apply part (1) of Claim 2.30 (as in the proof of Thm. 1.7) if OF; }f OP;, and part
(2) of Claim 2.30 if OP; || OP;. To begin with, since we suppose OP; }f OP», by the conditions
(1.13), (1.14) of Def. 1.4 and part (1) of Claim 2.30 we deduce that

I, (¢ (Q1,Q2)) = Ep,.p, and @, is tangent to Ep, p,. (5.2)

To proceed, we consider then the pair OP,,OP3. In this case OP, | OPs3, thus £p, p, is a
degenerate ellipse in the sense of Def. 1.8. Hence, by part (2) of Claim 2.30, we deduce that

I, (¢ (Q2,Q3)) = Ep,,p, and that ¥, is a hyperbola circumscribing Ep, p,.

Knowing that %, is a hyperbola, from (5.2) and Cor. 2.13 it also follows that %, circumscribes
the ellipse €p, p,. Finally, we consider the pair OP3, OP;. Applying as above (1) of Claim 2.30
(if OPs }y OPy) or (2) of Claim2.30 (if P3 = O), we find that

II,(¢(Q3,Q1)) = Ep,.p, and %, circumscribes Ep, p, . (5.3)

In conclusion, we have proved that % is a hyperbola circumscribing €p, p,, Ep, Py, Ep,.p,- Hence
%+ is a hyperbolic Pohlke’s conic, in the sense of Def. 1.9, for OP;,OP,, OP;.

(2) = (1). Let C be a hyperbolic Pohlke’s conic in the sense of Def. 1.9. By applying Claim 2.15
and Rem. 2.17 (as in the proof of Thm. 1.7) we can determine the hyperboloid . = J#(p) and
the projection direction, represented by v, up to symmetry with respect to the plane w. It
automatically follows that v is non-degenerate (by Claim2.18) and that

C=I,(#nm) ¥e,.
After this we consider the (eventually degenerate) ellipses Ep, p,, Ep,.py, Epy,p, - Using 1) and 2)
of Claim 2.19 (if OP; }f OP;) or Claim 2.23 (if OF; || OP;) and then the result of Appendix A, we
can show that there are @Q1,Q2, Q3 € # such that the conditions (1.13), (1.14) of Def. 1.4 are
verified. In this way we prove that Il is a hyperbolic Pohlke’s projection for OP;, OP,, OP;5.
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Conclusion of the proof. We can now prove that under the assumptions (5.1) the are infinite,
distinct hyperbolic Pohlke’s projections (conics) if |OP,| = |OPs]|, none if |OP,| # |OPs|.

To this end, we resort to the circular case as in the proof of Thm. 1.7. Namely, since we assume
OP; }f OP,, we may consider the affine transformation ® : w — w defined in (4.13). In this case
we have ®(P;) = N;, for 1 <i <3, with

ON1 1 ONQ, |ON1| == |ON2| =1 and ON2 || ON3 (54)

We note also that Claim 4.1 continues to hold even though we apply Def. 1.9 instead of Def. 1.6.
So we still have that C is a hyperbolic Pohlke’s conic for OP;, OP,, OP;s if and only if ®(C) is
a hyperbolic Pohlke’s conic for ON1, ONy, ON3. 25

Now, having ONs || ON3, by Lem. 3.4 there are infinite, distinct hyperbolic Pohlke’s projec-
tions for ON1, ON2, ON3 if |ON3| = 1, none if |ON3| # 1. By the equivalence (1) < (2) proved
above, it follows that there are infinite, distinct hyperbolic Pohlke’s conics for ONy, ONo, ONj3
if |ON3| =1, none if |ON3| # 1. Since

ION3;| =1 & |OPs] =|OPy), (5.5)

we deduce that, under assumption (5.1), there are infinite, distinct hyperbolic Pohlke’s conics
for OP;,OP5,0P5 if |OP3| = |OP»|, none if |OP;| # |OP;|. Finally, again by the equivalence
(1) & (2), the same holds for the hyperbolic Pohlke’s projections.

A Appendix

In Def. 1.4 it may seem more natural to require the condition

OQ1 | T#(Q2), OQ2 || T (Q3) and OQ3 || Ty (Q1), (A1)

rather than (1.14). But, if we replace condition (1.14) with (A.1), then Def. 1.4 does not work.
Indeed, even in the circular case (i.e., when OP;, OP, satisfy (3.3)), there does not exist a
projection I, : R? — w satisfying (1.13) and (A.1).

To see this, suppose there is such a kind of projection II, : R? — w. As in Section 3.1, we
note that p = 1, because &p, p, is a circle with center O and radius r = 1. That is

ff:{(x,y,z)€R3’m2+y2—z2:1}. (A.2)
Then, since P, P, € 57, we must have:
Pl=Q;or Q) and P, = Qs or Q. (A.3)
But in this case both possibilities
1) Q1 =P and Q2 = P» (or, equivalently, Q) = P;, Q) = P)

2) Q1 = P, and Q2 = P} (or, equivalently, Q] = P, Q2 = P)

5 1t is worth noting that if £p,q is a degenerate ellipse, then ®(Ep,) = Ea(p),3(Q)-



32 ON POHLKE’S TYPE PROJECTIONS IN THE HYPERBOLIC CASE

lead to contradictions.
In fact, if we set Q1 = P; and Q2 = P», applying Cor. 2.26, we find:

OP1 ” T%(Qg,) and OPQ H T%(Qg), (A4)

which, in turn, implies OQ3 L w. But this later condition is impossible if Q3 € 7. 17
Conversely, if we try to set Q1 = P, and Q) = P» (i.e., Q2 = Pj), we have

OPy | T (P2), OP1 || Ty(P) (A.5)
and, applying Cor. 2.26, also

OPy | T#(Q3), OPy | Tx(Q3). (A.6)

Then, using coordinates axes x,y oriented in space such that (3.11) holds, (A.5) implies that
the vector v = li + mj + nk satisfies:

i) v Liif Pp# Pj. In fact, if Py # Pj then P>P; || v. But, taking into account (2.60),
condition (A.5) requires PoPy L i.

ii) v Ljif P, =P, Infact, we have P,=P) & Poemy & m=0.

On the other hand, still from (2.60) and from (A.6), we have that Q3 € # N {x = 0} and
Q% € A N{y = 0}. So these points must be of the form

0 cosh™f3
Q3= | cosh*« and Q5= 0 , (A.7)
sinh « sinh 3

for suitable «, 5. But this means that

Q3Q5 L1 and Q3Q5 Lj, (A.8)

because cosh*a, cosh* # 0, in contradiction with the fact that v || Q3Q%.

A.1 A more algebraic justification

More generally, we can prove that
Claim A.1 There does not exist Q1, Q2, Qs € F(p) such that

OQ1 || T (Q2), OQ2 || T (Q3), OQ3 || Tr(Q1). (A9)

Proof. In fact, writing Q1 = (21,41, 21), Q2 = (%2,y2,22), @3 = (x3,y3, 23), by (2.60) we can
reformulate (A.9) in the equivalent form:

T1T2 +y1Yy2 — 2122 =0
Toxs + Yoys — 2223 =0 (A.IO)

173 +11Yy3 — 2123 =0
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Then, assuming Q1, Q2 € J€(p) are such that OQ; || T»(Q2) (i-e., the first equation of (A.10)
holds), we can show that there does not exist Q3 € (p) such that OQ2 || T»(Q3) and
0Qs || T (Q1) (ie., the last two equations of (A.10) hold).

By contradiction let us suppose that such a point Q3 exists. Noting that OQq }f OQ2 (see
Rem. 2.28), from the last two equations of (A.10), we deduce that:

yr —2
Y2 —22

r1 Y1

, A1l
€2 Y2 ( )

y3:_)\ ) 23:)\

T2 —Zz2

:53:)\‘

for a suitable A % 0. To proceed, it is not restrictive to assume that the coordinate axes are
chosen such that Q1 = (x1,0, 21), that is,

y1 = 0. (A.12)
Hence (A.11) and (A.12) give
r3 = Az1Y2, Y3 = )\(:Elzg — 2’1.1?2), Z3 = AT1Yo (A.13)
and then
x4 y2 — 22 = )2 [z%y%—{— (xlzg—zlxg)Q—x%yg}. (A.14)
Now, we observe that
(21 —27)y3 = —p*y5 because ai — 27 = p*. (A.15)

So, if z9 = 22 = 0, from (A.14) and (A.15) we immediately obtain
i ys =22 = N phyl = N2t < 0.% (A.16)

Since we must have 23 + y2 — 22 = p?, the inequality (A.16) gives a contradiction. Conversely,
let us suppose (2, z2) # (0,0). With y; = 0 the first equation of (A.10) reads

Ty 21

S (A.17)
Having assumed (x2, z2) # (0,0), we can deduce that
T1 = uzo, z1 = pxo for asuitable p # 0. (A.18)
This means that ) )
(122 — 2122)" = p? (25 —23)". (A.19)
On the other hand, since 23 — 2§ = p?, from (A.18) we also have
e (A.20)

Taking into account (A.19), we therefore find

2
(r120 — 2122)" = p? (25 — 23) = p* (45 — p°), (A.21)
because z3 + y3 — 22 = p?. Finally, from (A.14), (A.15) and (A.21), we obtain

v yE -2 =N [ — p*y3 + p* (43 — pQ)} = _A2pt <o, (A.22)

which gives the same contradiction of (A.16). O

26 Note that zo = 22 =0 = y3 = p>
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