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Abstract

Let OP1, OP2, OP3 be three non-parallel segments in a plane. The purpose of this note
is to extend the results obtained in [6] and [7] determining the common inscribed ellipse
and the common circumscribing hyperbola (with center O) of the three ellipses having as
conjugate semi-diameters the pairs (OP1, OP2), (OP2, OP3) and (OP3, OP1).
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1 Introduction

Given three non-parallel segments OP1, OP2, OP3 originating at O and lying in a plane ω , we
consider the three concentric ellipses EP1,P2 , EP2,P3 , EP3,P1 determined by the pairs of conjugate
semi-diameter (OP1, OP2), (OP2, OP3) and (OP3, OP1), respectively.

It is a simple consequence of Pohlke’s fundamental theorem ([1], [4], [5], [8]) that there is
always an ellipse with center O, here indicated with EP (Pohlke’s ellipse), which circumscribes
EP1,P2 , EP2,P3 and EP3,P1 ([2], [3], [6]). 1 It is possible to show (see [7, Thm. 3.8]) that if

−−→
OP3 = h

−−→
OP1 + k

−−→
OP2 , (1.1)

then a pair of conjugate semi-diameters of EP is given by the vectors

−−→
OV =

k
−−→
OP1 − h

−−→
OP2√

h2 + k2
,

−−→
OW =

√
1 + h2 + k2

h2 + k2
−−→
OP3 . (1.2)

Again supposing that OP1, OP2, OP3 are non-parallel, if we further assume that

(h+ k + 1)(h+ k − 1)(h− k + 1)(h− k − 1) > 0, (1.3)

then there is a second concentric ellipse, other than EP , which circumscribes EP1,P2 , EP2,P3 and
EP3,P1 . We call this new ellipse the secondary Pohlke’s ellipse ES . It turns out that ES is unique
and that (1.3) is also a necessary condition. See [6], [7] and [10].

1 If OQ1, OQ2, OQ3 are congruent, mutually orthogonal segments and Π : R3 → ω is a parallel projection
such that Π(Qi) = Pi for i = 1, 2, 3, then the ellipse EP is the contour of Π(S), where S ⊂ R3 is the sphere with
center O containing Q1, Q2, Q3 . The existence and uniqueness of EP derive from Pohlke’s theorem.
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2 On Pohlke’s type projections in the hyperbolic case

It is worth noting that in both the above cases the circumscribing ellipse (EP or ES) is
obtained as the contour of the parallel projection, into the drawing plane ω , of a suitable sphere
with center O. In the present paper we investigated what happens when (1.3) does not hold,
i.e., when the secondary Pohlke’s ellipse ES does not exist. For this purpose we use the parallel
projection, on the plane ω, of a suitable hyperboloid. We show that if

(h+ k + 1)(h+ k − 1)(h− k + 1)(h− k − 1) < 0, (1.4)

and
f(h, k) = (h2 + k2 − 1)

[
(h2 − k2)2 − 1)

]
̸= 0, (1.5)

then there is a third conic, with center O, tangent to EP1,P2 , EP2,P3 and EP3,P1 .
Further, it turns out that this conic is an ellipse, say EI , inscribed in EP1,P2 , EP2,P3 , EP3,P1

if h, k are such that f(h, k) < 0. Conversely, it is a hyperbola, say HC, which circumscribes
the three ellipses EP1,P2 , EP2,P3 , EP3,P1 if f(h, k) > 0. 2 Both EI and HC , when they exit,
are unique and the conditions (1.4), (1.5) are also necessary. But, unlike what happens in the
previous two cases (i.e., for the ellipses EP and ES), now the conics EI and HC are obtained as
the contour of the parallel projection of a suitable one-sheeted hyperboloid centered in O and
with axis perpendicular to the plane ω.

1.1 Definitions and Main Results

In the Euclidean space E3 we fix a plane ω and a system of coordinates such that

ω
def
=
{
(x, y, z) ∈ R3

∣∣ z = 0
}
. (1.6)

We denote with O ∈ ω the origin of coordinates.

Definition 1.1 Given a plane π and a non-zero vector w, w ∦ π, we say that P,Q are obliquely
symmetrical with respect to π, in the direction of w, if

PQ ∥ w and
P +Q

2
∈ π. 3 (1.7)

Definition 1.2 Given a non-zero vector

v = li+mj+ nk (l,m, n ∈ R), (1.8)

we denote with πv the plane
πv : lx+my − nz = 0. (1.9)

When v ∦ πv (i.e., if l2 + m2 − n2 ̸= 0), we say that P, P ′ are πv–symmetric if P, P ′ are
obliquely symmetrical with respect to the plane πv, in the direction of v.

For ρ > 0, we denote with H = H (ρ) be the one-sheeted hyperboloid

H (ρ)
def
=
{
(x, y, z) ∈ R3

∣∣x2 + y2 − z2 = ρ2
}
. (1.10)

Furthermore, given a point P ∈ H , we indicate with TH (P ) the tangent plane to H at P .
Namely, if P = P (xP, yP, zP), the plane

TH (P ) : xPx+ yPy − zPz = ρ2. (1.11)
2 HC circumscribes EP1,P2 , EP2,P3 , EP3,P1 in the sense of Def. 2.8 below.
3 With P+Q

2
we will indicate the midpoint of the segment PQ.
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Definition 1.3 Let v be a non-zero vector such that v ∦ ω. We denote with

Πv : R3 −→ ω (1.12)

the parallel projection onto ω , in the direction of v. If v ∦ ω and v = li + mj + nk, we say
that Πv : R3 → ω is non-degenerate for H (or, simply, non-degenerate) if l2 +m2 − n2 ̸= 0.
Similarly, we say that v gives a non-degenerate projection direction.

Definition 1.4 Let OP1, OP2, OP3 ⊂ ω be three segments which are not contained in a line.
A non-degenerate parallel projection Πv : R3 → ω is a hyperbolic Pohlke’s projection for

OP1, OP2, OP3 if there are a hyperboloid H = H (ρ), for some ρ > 0, and three points
Q1, Q2, Q3 ∈ H such that

Πv(Qi) = Pi (1 ≤ i ≤ 3), (1.13)

OQ1 ∥ TH (Q2), OQ2 ∥ TH (Q3) and OQ3 ∥ TH (Q′
1), (1.14)

where Q′
1 ∈ H is πv–symmetric to Q1 in the sense of Def. 1.2 above.

If the segments OP1, OP2, OP3 are not parallel to each other, we can think (OP1, OP2),
(OP2, OP3) and (OP3, OP1) as pairs of conjugate semi-diameters of three concentric ellipses.

Definition 1.5 Given OP,OQ ⊂ ω, OP ∦ OQ, we denote with EP,Q the ellipse with OP,OQ
as conjugate semi-diameters.

Then, considering the ellipses EP1,P2 , EP2,P3 and EP3,P1 , we give the following definition:

Definition 1.6 Suppose OP1, OP2, OP3 are non-parallel. A conic C, with center O, is a hyper-
bolic Pohlke’s conic for OP1, OP2, OP3 if one of the following holds:

� C is an ellipse inscribed in EP1,P2, EP2,P3, EP3,P1 .
4

� C is a hyperbola which circumscribes EP1,P2, EP2,P3, EP3,P1 .
4

Theorem1.7 Suppose the segments OP1, OP2, OP3 are non-parallel. Then the following three
properties are equivalent:

(1) there is a hyperbolic Pohlke’s projection Πv for OP1, OP2, OP3 ;

(2) there is a hyperbolic Pohlke’s conic C for OP1, OP2, OP3 ;

(3)
−−→
OP3 = h

−−→
OP1 + k

−−→
OP2 with h, k satisfying the conditions

f(h, k)
def
= (h2 + k2 − 1)

[
(h2 − k2)2 − 1)

]
̸= 0 (1.15)

and
g(h, k)

def
= (h+ k + 1)(h+ k − 1)(h− k + 1)(h− k − 1) < 0. (1.16)

4 In other words, we require that C be tangent to the three ellipses EP1,P2 , EP2,P3 , EP3,P1 and that

a) C ⊂ int(EP1,P2) ∩ int(EP2,P3) ∩ int(EP3,P1), if C is an ellipse;

b) EP1,P2 , EP2,P3 , EP3,P1 ⊂ int(C), if C is a hyperbola.

Here, given a central conic C (i.e., an ellipse or a hyperbola) in a plane π, we denote with int(C) (interior of C )
the closure in π of the connected component of π \ C containing the center of C. See Defs. 2.7, 2.8 below.
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If the above conditions are true, the conic C is unique and it turns out that C is an ellipse if
f(h, k) < 0, while C is a hyperbola if f(h, k) > 0. The projection Πv is unique up to symmetry
with respect to the plane ω. 5 Besides,

C = Πv(H ∩ πv) (1.17)

where H , πv satisfy the conditions of Def. 1.4.

If OP1, OP2, OP3 are not contained in a line but two of them are parallel, in particular if
one of them vanishes, we need to introduce degenerate ellipses. 6

Definition 1.8 If OP,OQ do not both vanish and OP ∥OQ, the degenerate ellipse EP,Q is the
segment MN parallel to OP,OQ such that

|MN |2 = 4
(
|OP |2 + |OQ|2

)
and

M +N

2
= O. (1.18)

Given a central conic C , with center O, we say that C circumscribes the degenerate ellipse EP,Q
(or that EP,Q is inscribed in C ) if M,N ∈ C. 7

Now we can reformulate Def. 1.6 just saying that:

Definition 1.9 If OP1, OP2, OP3 are not contained in a line but two of them are parallel, a
hyperbolic Pohlke’s conic for OP1, OP2, OP3 is a hyperbola, with center O, circumscribing the
three (eventually degenerate) ellipses EP1,P2, EP2,P3, EP3,P1 .

Using the Def. 1.9, instead of Def. 1.6, we can state the following:

Theorem1.10 Suppose OP1, OP2, OP3 are not contained in a line. If two of them are parallel,
then there are infinitely many, distinct hyperbolic Pohlke’s projections (conics) if these two
segments are equal (i.e., congruent), none if they are different.

2 Some basic geometric facts

We shall prove here a number of facts about the one-sheeted hyperboloid H = H (ρ) defined
in (1.10). We start with some symmetry properties.

Claim2.1 Let πv be the plane introduced in Def. 1.2 and let us suppose that l2 +m2 − n2 ̸= 0.
Then H is πv–symmetric (i.e., P ∈ H ⇒ P ′ ∈ H ).

Proof. Indeed, let r be any line parallel to v, that is,

r :


x = xo + lt

y = yo +mt

z = zo + nt

(t ∈ R), for a suitable P (xo, yo, zo). (2.1)

5 In the sense that, in Def. 1.4, the hyperboloid H (ρ) is unique and the projection direction (represented by
the vector v) is unique up to orthogonal symmetry (i.e., the usual symmetry) with respect to ω.

6 We assume, by convention, that the null segment is parallel to any other segment. Degenerate ellipses were
introduced in [1, pp. 372-373]. See also Defs. 3.1, 3.3 of [6].

7 Note that M,N ∈ C ⇒ EP,Q ⊂ int(C) See Def. 2.7 below.
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Introducing the expressions (2.1) into the equation of H , we see that the points of r ∩ H are
determined by the real solutions of

(l2 +m2 − n2)t2 + 2(lxo +myo − nzo)t+ x2o + y2o − z2o = ρ2. (2.2)

Since l2 +m2 − n2 ̸= 0, equation (2.2) is of second degree with roots t1, t2 such that

t1 + t2
2

= − lxo +myo − nzo
l2 +m2 − n2

. (2.3)

Now, if P ∈ H , the solutions of (2.2) are

t1 = 0 and t2 = −2
lxo +myo − nzo
l2 +m2 − n2

. (2.4)

Hence r ∩ H = {P (t1), P (t2)} with P (t1) = P and P (t2) such that

P (t1) + P (t2)

2
= P

(
t1 + t2

2

)
∈ πv , (2.5)

because of (2.1), (2.3). Thus P (t2) = P ′ . 2

Remark 2.2 From the proof of Claim 2.1 one can also see that r is tangent to H at P iff
P ∈ H ∩ πv. In fact, if P ∈ H , we have t1 = t2 ⇔ lxo +myo − nzo = 0.

Definition 2.3 Let v = li + mj + nk with l2 + m2 − n2 ̸= 0. We indicate with Sv the map
associated to the oblique symmetry with respect to πv , in the direction of v. That is the map

P (x, y, z)
Sv−−−→ P ′(x′, y′, z′), (2.6)

given by

Sv(x, y, z) = (x− 2λl, y − 2λm, z − 2λn) with λ =
lx+my − nz

l2 +m2 − n2
. 2 (2.7)

Note that, according to Def. 2.3, Sk represents the orthogonal symmetry (i.e., the usual sym-
metry) with respect to the plane ω . Besides, we observe that

Remark 2.4 We can also get Claim 2.1 directly from the oblique symmetry Sv introduced in
Def. 2.3. Indeed, it is easy to see that Sv(P ) ∈ H iff P ∈ H .

2.1 The intersection of H with the plane πv

If πv is the plane introduced in Def. 1.2, it is clear that H ∩ πv is non-empty, symmetric with
respect to O and such that O /∈ H ∩ πv . Thus H ∩ πv must be a central conic in πv with
center O, if it is non-degenerate. 8 On the other hand, if H ∩ πv is degenerate, then it is a pair
of distinct, parallel lines which are symmetric with respect to O. More precisely,

Claim2.5 Let πv be the plane introduced in Def. 1.2, then

8 That is, a non-degenerate conic with center, i.e., an ellipse or a hyperbola.
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(1) H ∩ πv is an ellipse ⇔ l2 +m2 − n2 < 0. 9

(2) H ∩ πv is a pair of distinct, parallel lines ⇔ l2 +m2 − n2 = 0.

(3) H ∩ πv is a hyperbola ⇔ l2 +m2 − n2 > 0.

Proof. ⇐ To begin with, let us suppose n = 0. Then we have l2 +m2 − n2 > 0 and

πv : lx+my = 0.

From the identity

(l2 +m2)(x2 + y2) ≡ (lx+my)2 + (mx− ly)2, (2.8)

we deduce that H ∩ πv is given by the points P (x, y, z) ∈ πv such that

(mx− ly)2

l2 +m2
− z2 = ρ2. (2.9)

But (2.9) represents a hyperbola in πv , because h = mx−ly√
l2+m2

and k = z may be considered as

coordinates in πv. Next, let us suppose n ̸= 0. In this case the coordinates of the points of πv
satisfy the relation

z =
lx+my

n
. (2.10)

Hence H ∩ πv is given by the points P (x, y, z) ∈ πv such that

(n2 − l2)x2 + (n2 −m2)y2 − 2lmxy = n2ρ2. (2.11)

Equation (2.11) (with the condition z = 0) defines a conic C, with center O, in the plane ω .
Namely, C is an ellipse if l2 +m2 − n2 < 0, while C is a hyperbola if l2 +m2 − n2 > 0. Noting
that H ∩ πv is the image of C via the affine transformation T : ω → πv,

(x, y)
T−−→

(
x, y,

lx+my

n

)
, (2.12)

H ∩ πv is an ellipse or a hyperbola depending on whether the quantity l2 +m2 − n2 is < 0 or
> 0, respectively. Finally, let us suppose n ̸= 0 and l2 +m2 − n2 = 0. In this last case (2.11)
factorizes as

(mx− ly + nρ)(mx− ly − nρ) = 0, (2.13)

because n2 − l2 = m2 and n2 −m2 = l2. Thus H ∩ πv is a pair of distinct, parallel lines which
are symmetric with respect to O.
⇒ The reverse implication is now an immediate consequence of the fact that by proving ⇐ we
have exhausted all possible cases for the sign of the quantity l2 +m2 − n2. 2

For the sake of brevity, we will later say that:

Definition 2.6 C is an admissible conic if C is a central conic centered at O, or a pair of
distinct, parallel lines which are symmetric with respect to O.

9 We will distinguish between circles and ellipses only when strictly necessary. In this case it is not difficult
to show that H ∩ πv is a circle ⇔ l = m = 0.
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2.2 The projection of H into the plane πv

We will adopt the following terminology:

Definition 2.7 Let C ⊂ π be a central conic in a plane π, i.e., an ellipse or a hyperbola.

(1) We denote with int(C) (interior of C) the closure in π of the connected component of
π \ C containing the center of C.

(2) We denote also with ext(C) (exterior of C) the closure in π of π \ int(C).

Definition 2.8 Given two concentric central conics C1, C2 ⊂ ω , we will say that C1 is inscribed
in C2 (or, equivalently, that C2 circumscribes C1 ) if C1 and C2 are tangent and C1 ⊂ int(C2).

Remark 2.9 As it is known, in an appropriate coordinate system (say x,y) a central conic C
has the simple equation λx2 + µy2 = 1, with λ > 0 and µ ̸= 0. Then, we have

int(C) =
{
P (x,y) ∈ ζ

∣∣λx2 + µy2 ≤ 1
}
,

ext(C) =
{
P (x,y) ∈ ζ

∣∣λx2 + µy2 ≥ 1
}
. 2

If v = li+mj+ nk provides a non-degenerate projection direction (Def. 1.3), i.e.,

l2 +m2 − n2 ̸= 0, (2.14)

we may consider the parallel projection Π̃v : R3 → πv in the direction of v; that is

Π̃v(x, y, z)
def
= (x− λl, y − λm, z − λn) with λ =

lx+my − nz

l2 +m2 − n2
. (2.15)

Applying Claim 2.5, we have:

Claim2.10 Let Π̃v : R3 → πv be the projection defined by (2.15), then

(a) Π̃v(H ) = ext(H ∩ πv) if H ∩ πv is an ellipse, i.e., if l2 +m2 − n2 < 0.

(b) Π̃v(H ) = int(H ∩ πv) if H ∩ πv is a hyperbola, i.e., if l2 +m2 − n2 > 0.

Proof. Indeed, given P (xo, yo, zo) ∈ πv, we have that

P ∈ Π̃v(H ) ⇐⇒ equation (2.2) has a real solution.

Since lxo +myo − nzo = 0 in πv, from (2.2) we see that:

(a′) P ∈ Π̃v(H ) ⇔ x2o + y2o − z2o ≥ ρ2, if H ∩ πv is an ellipse.

(b′) P ∈ Π̃v(H ) ⇔ x2o + y2o − z2o ≤ ρ2, if H ∩ πv is a hyperbola.
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Supposing for the moment n ̸= 0 and using (2.10), we see that:

(a′′) x2o + y2o − z2o ≥ ρ2 ⇔ (n2 − l2)x2o + (n2 −m2)y2o − 2mlxoyo ≥ n2ρ2,

(b′′) x2o + y2o − z2o ≤ ρ2 ⇔ (n2 − l2)x2o + (n2 −m2)y2o − 2mlxoyo ≤ n2ρ2,

depending on whether H ∩ πv is an ellipse or a hyperbola, respectively. In other words, given
P (xo, yo, zo) ∈ πv, we deduce that:

(a′′′) P ∈ Π̃v(H ) ⇔ (xo, yo) is exterior to the ellipse E ⊂ ω , with

E : (n2 − l2)x2 + (n2 −m2)y2 − 2mlxy = n2ρ2,

(b′′′) P ∈ Π̃v(H ) ⇔ (xo, yo) is interior to the hyperbola H ⊂ ω , with

H : (n2 − l2)x2 + (n2 −m2)y2 − 2mlxy = n2ρ2,

depending on whether H ∩ πv is respectively an ellipse or a hyperbola.
To conclude, it is now sufficient to observe that in any case the plane πv is the affine image, via
the transformation T : ω → πv in (2.12), of the plane ω and that, by (2.10)−(2.11), the same
transformation maps the conic E ⊂ ω , or H ⊂ ω , onto H ∩ πv. Hence we also have:

(a′′′′) (xo, yo) is exterior to the ellipse E ⇔ P is exterior to the ellipse H ∩ πv ,

(b′′′′) (xo, yo) is interior to the hyperbola H ⇔ P is interior to the hyperbola H ∩ πv ,

depending on whether H ∩ πv is respectively an ellipse or a hyperbola.

Finally, let us suppose n = 0. In this case l2 +m2 − n2 > 0, thus H ∩ πv is a hyperbola
in πv . Given P = P (xo, yo, zo) ∈ πv, using the identity (2.8) we can rewrite the condition (b′),
that is, x2o + y2o − z2o ≤ ρ2, in the form

(mxo − lyo)
2 − (l2 +m2)z2o ≤ (l2 +m2)ρ2, (2.16)

because P ∈ πv ⇔ lxo +myo = 0. Then, introducing in πv the coordinates h = mx−ly√
l2+m2

and

k = z , we immediately see that condition (2.16) is equivalent to

h2o − k2o ≤ ρ2 with ho = h(xo, yo), ko = zo . (2.17)

This, in turn, is equivalent to saying that P ∈ πv is interior to the hyperbola H ∩ πv. In fact,
with the coordinates (h, k), the equation of H ∩πv is exactly h2−k2 = ρ2, as one can see from
the first part of the proof of Claim 2.5. 2

2.3 The projection of H and H ∩ πv into the plane ω

To continue we suppose
v = li+mj+ nk with n ̸= 0. (2.18)

We can therefore define the projection Πv : R3 → ω in the direction of v. Namely

Πv(x, y, z)
def
=

(
x− l

n
z, y − m

n
z, 0

)
. (2.19)

Assuming also l2 +m2 − n2 ̸= 0 the restriction of Πv to the plane πv : lx+my − nz = 0 is an
affine transformation from πv to ω . Noting that Πv(O) = O, taking into account Def. 1.3 and
Claim 2.5, we easily have the following:
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Corollary 2.11 Let Πv : R3 → ω be non-degenerate, then

(1) Πv(H ∩ πv) is an ellipse centered at O ⇔ l2 +m2 − n2 < 0. 10

(2) Πv(H ∩ πv) is a hyperbola centered at O ⇔ l2 +m2 − n2 > 0.

We can then give the following definition:

Definition 2.12 Let Πv : R3 → ω be non-degenerate. We denote with Cv the conic

Cv
def
= Πv(H ∩ πv). (2.20)

Let us note that

Πv = Πv ◦ Π̃v ,

if v is non-degenerate. Then, from Claim 2.10, we have:

Corollary 2.13 Let Πv : R3 → ω be non-degenerate. Then

(1) Πv(H ) = ext(Cv) if Cv is an ellipse, i.e., if l2 +m2 − n2 < 0.

(2) Πv(H ) = int(Cv) if Cv is a hyperbola, i.e., if l2 +m2 − n2 > 0.

Remark 2.14 When l2 +m2 − n2 = 0 it is easy to see that

Πv(H ) = ω \
{
(x, y, 0)

∣∣ lx+my = 0, x2 + y2 ̸= ρ2
}
. (2.21)

This follows from (2.2) with P ∈ ω and l2 +m2 − n2 = 0. Namely, the equation

2(lxo +myo)t+ x2o + y2o = ρ2. (2.22)

Indeed, from (2.22) we can see that r ∩ H = ∅ iff lxo +myo = 0 and x2o + y2o ̸= ρ2 . 2

Remembering that H = H (ρ), it is also easy to see that:

Claim2.15 Suppose Πv : R3 → ω is non-degenerate. If l,m are not both 0, then Cv ⊂ ω is
central conic, with center O, and major/transverse axis orthogonal to v. More precisely,

1) If l2 +m2 − n2 < 0, then Cv is an ellipse, centered at O, with semi axes a, b such that

a = ρ, b2 = ρ2
n2 − l2 −m2

n2
.

2) If l2 + m2 − n2 > 0, then Cv is a hyperbola with transverse semi-axis a and conjugate
semi-axis b such that

a = ρ, b2 = ρ2
l2 +m2 − n2

n2
.

If l = m = 0 the conic Cv ⊂ ω is merely the circle with center O and radius ρ.

10 It follows that Πv(H ∩ πv) is a circle ⇔ l = m = 0. See Claim 2.15 and Remark 2.17.
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Proof. We may suppose that

v = λj+ nk with λ2 − n2 ̸= 0, (2.23)

since the general case follows by rotating v, given by (2.23), around the z-axis.
Then, from (2.11) with l = 0 and m = λ, the intersection H ∩ πv is given by the points
P = (x, y, z) ∈ πv such that

n2x2 + (n2 − λ2)y2 = n2ρ2. (2.24)

By (2.23) we have πv : λy − nz = 0. This means that P (x, y, z) ∈ H ∩ πv if and only if

x2 +

(
n2 − λ2

n2

)
y2 = ρ2, z =

λ

n
y. (2.25)

With v as in (2.23) and P (x, y, z) such that z = λ
n y , from (2.19) we find

Πv(x, y, z) =

(
x,

n2 − λ2

n2
y, 0

)
def
= (x̄, ȳ, z̄). (2.26)

Hence the coordinates (x̄, ȳ, z̄) of the points of Cv ⊂ ω satisfy

x̄2 +

(
n2

n2 − λ2

)
ȳ2 = ρ2 , z̄ = 0. (2.27)

For λ ̸= 0, we deduce that

� If λ2 − n2 < 0, then Cv is an ellipse with major semi-axis a = ρ and minor semi-axis b
such that b2 = ρ2 n2−λ2

n2 . The major semi-axis, being along the x-axis, is orthogonal to
the direction of projection, i.e., v given by (2.23).

� If λ2 − n2 > 0, then Cv is a hyperbola with transverse semi-axis a = ρ and conjugate
semi-axis b such that b2 = ρ2 λ2−n2

n2 . The transverse semi-axis, being along the x-axis, is
orthogonal to the direction of projection given by (2.23).

Finally, when λ = 0, the conclusion (which formally follows from (2.27) with λ = 0) is immediate
because πv = πk = ω . 2

Remark 2.16 From (2.25)−(2.26) it also follows that if

v = λj+ nk with λ2 − n2 = 0, (2.28)

then the points (x̄, ȳ, 0) of Πv(H ∩ πv) satisfy x̄2 = ρ2, ȳ = 0. Hence Πv(H ∩ πv) reduces to
the pair (±ρ, 0, 0). For general v = li+mj+ nk, such that l2 +m2 − n2 = 0, we find

Πv(H ∩ πv) = ±
(

mρ√
l2 +m2

,
−lρ√
l2 +m2

, 0

)
. 2 (2.29)

Remark 2.17 From Claim 2.15 we can see that given a central conic C ⊂ ω , with center O,
there are a unique ρ > 0 and, up to symmetry with respect to ω, a unique projection direction
(represented by the vector v) such that

C = Πv(H ∩ πv)
def
= Cv .

Indeed, ρ must be equal to the major/transverse semi-axis of C (or the radius, if C is a
circle). As for the direction projection, we have:
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� If C is a circle, then the projection direction is given by the vector v = k.

� If C is an ellipse with semi-axes OV, OW such that |OV | < |OW | and
−−→
OV = pi + qj ,

then ρ = |OW | and the projection direction is given by the vectors

v = δpi+ δqj ± k with δ =

√
ρ2 − p2 − q2

ρ2(p2 + q2)
. (2.30)

� If C is a hyperbola with conjugate and transverse semi-axes OV, OW respectively and if−−→
OV = pi+ qj, then ρ = |OW | and the projection direction is given by the vectors

v = δpi+ δqj ± k with δ =

√
ρ2 + p2 + q2

ρ2(p2 + q2)
. 2 (2.31)

In addition, it is immediate that:

Claim2.18 In all three cases of Rem. 2.17 the vector v is non-degenerate. 11

Moreover, recalling the Defs. 1.2, 1.3 and 2.6, we have:

Claim2.19 Let Πv : R3 → ω be non-degenerate. Then

1) If C ⊂ Πv(H ) is an admissible conic tangent to Cv, then there are πv−symmetric planes
π, π′ through the origin O such that π, π′ ∦ v and

C = Πv(H ∩ π) = Πv(H ∩ π′). (2.32)

2) If in 1) we also assume that C is an ellipse or a hyperbola with conjugate semi-diameters
(OP1, OP2), then there are Q1, Q

′
1, Q2, Q

′
2 ∈ H such that Π−1

v (P1) ∩ H = {Q1, Q
′
1},

Π−1
v (P2) ∩ H = {Q2, Q

′
2} and (OQ1, OQ2), (OQ′

1, OQ′
2) are conjugate semi-diameters

of the conics H ∩ π and H ∩ π′, respectively.

3) Conversely, if π is a plane through the origin O such that π ∦ v and H ∩ πv ∩ π ̸= ∅,
then C = Πv(H ∩ π) is an admissible conic, tangent to Cv .

Proof. 1) Let C be tangent to Cv at X1 and let

t be the common tangent of C and Cv at X1. (2.33)

Besides, let X2 ∈ C such that OX1 ∦ OX2 . Since we assume C ⊂ Πv(H ), we clearly have

X1, X2 ∈ Πv(H ). (2.34)

11 This is obvious in view of Cor. 2.11 and Rem. 2.16. But, setting v = li + mj + nk, in the three cases of
Rem. 2.17 it is also easy to see that:

l2 +m2 − n2 =


−1 if C is a circle

− p2+q2

ρ2
if C is an ellipse

p2+q2

ρ2
if C is a hyperbola
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Thus there are Y1 ∈ H ∩ πv and Y2 ∈ H such that

Πv(Y1) = X1 , Πv(Y2) = X2 and OY1 ∦ OY2 .
12 (2.35)

To proceed, let π be the plane through the points O, Y1, Y2. It is clear that π ∦ v, otherwise we
would have OX1 = Πv(OY1) ∥ Πv(OY2) = OX2. Hence the restriction

Πv

∣∣∣
π
: π −→ ω defines an affine transformation. (2.36)

By Claim 2.5 (with π instead of πv)
H ∩ π (2.37)

is an admissible conic. Then, by (2.36),

Q def
= Πv(H ∩ π)

is also an admissible conic and by (2.33) and Cor. 2.13,

X1 ∈ Q and Q ⊂ Πv(H ) =⇒ Q has tangent t at X1 .

This means that Q has in common with C the point X1 , the tangent t at X1 and a second
point X2 such that OX1 ∦ OX2 . Since C and Q are both symmetric with respect to the
origin O, it follows that C = Q = Πv(H ∩ π). 13 Furthermore, taking into account that H is
πv−symmetric, if the plane π′ is πv−symmetric to π we also find

Πv(H ∩ π′) = Πv(H ∩ π) = C . (2.38)

Finally, we note that π ∦ v ⇒ π′ ∦ v, because π′ ∥ v ⇒ π′ = π, hence π ∥ v (but we can also
observe that (2.38) ⇒ π′ ∦ v).

2) Having already observed that π, π′ ∦ v, the thesis follows from (2.38) and from the fact that
the restrictions

Πv

∣∣∣
π
: π −→ ω and Πv

∣∣∣
π′

: π′ −→ ω are affine transformations. (2.39)

More precisely, by (2.38) and (2.39), we can certainly say that there are Q1, Q2 ∈ H ∩ π and
Q′

1, Q
′
2 ∈ H ∩ π′ such that

Πv(Q1) = Πv(Q
′
1) = P1 , Πv(Q2) = Πv(Q

′
2) = P2 .

Thus the pairs (OQ1, OQ2) and (OQ′
1, OQ′

2) are conjugate semi-diameters of the conics H ∩π
and H ∩ π′ , respectively. On the other hand, it easy to show that

Π−1
v (Pi) ∩ H ={Qi, Q

′
i} for i = 1, 2.

12 Note that Y1 is unique. In fact, assuming X1 ∈ Cv, the line through X1 and parallel to v is tangent to
H at a point of H ∩ πv. Y2 is unique up to πv–symmetry, because Π−1

v (X2) ∩ H = {Y2, Y
′
2} with Y2, Y

′
2

πv−symmetric; furthermore, Y2 = Y ′
2 ⇔ X2 ∈ Cv. See Claim 2.1 and Rem. 2.2 above. Finally, being Πv an

affine transformation, it follows that OX1 ∦OX2 ⇒ OY1 ∦OY2 .
13 The equation of a conic Q ⊂ {z = 0} that is symmetrical with respect to O, but which does not pass through

O, can be expressed in the form αx2 + βy2 + γxy = 1. The coefficients α, β, γ are uniquely determined if (for
instance) we know two points P1, P2 ∈ Q and the tangent t at one of them, provided OP1 ∦ OP2 and O /∈ t (if
O ∈ t then Q does not exist). If P1P2 ∥ t or P1P

′
2 ∥ t (with P ′

2 symmetric to P2 with respect to O), the conic is
degenerate. Namely, in this case Q = t ∪ t′, with t′ the symmetric of t with respect to O.
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Indeed, if Qi ̸= Q′
i there is nothing to prove, because Π−1

v (Pi) ∩ H contains at most two
elements. Conversely, if Qi = Q′

i = Q, then we have Q ∈ πv because

Q ∈ π ∩ π′ and Q ̸∈ πv =⇒ Q ̸= Q′ and then v ∥ QQ′ ∥ π, (2.40)

which is a contradiction. But if Q ∈ πv , the set Π
−1
v (Pi)∩H consists of only one element since

the line Π−1
v (Pi) is then tangent to H at Q. See Rem. 2.2.

3) Conversely, let π be a plane through the origin O such that π ∦ v. By Claim 2.5, H ∩ π is
an admissible conic in π and since we suppose π ∦ v, it is clear that (2.36) holds.
Thus C = Πv(H ∩ π) is an admissible conic in ω . Moreover, C ∩ Cv ̸= ∅ because we assume
H ∩ πv ∩ π ̸= ∅ . Taking into account that C ⊂ Πv(H ), from Cor. 2.13 we then deduce that C
and Cv are tangent at any point of Πv

(
H ∩ πv ∩ π

)
. 2

Remark 2.20 The condition H ∩ πv ∩ π ̸= ∅, which appears in 3) of Claim 2.19, is certainly
true if at least one of the conics H ∩πv and H ∩π is an ellipse. For instance, let E = H ∩πv
be an ellipse. Then

H ∩ πv ∩ π = E ∩ (πv ∩ π) ̸= ∅, (2.41)

because E is an ellipse in πv centered at O and πv ∩ π contains a line through O in πv .

2.4 The case of degenerate ellipses

In Claim 2.19 we have assumed that C ⊂ Πv(H ) is an admissible conic, tangent to Cv . But in
view of the proof of Thm. 1.10 we need also to consider what happen if C is a degenerate ellipse
(in the sense of Def. 1.8) inscribed in Cv , when Cv is a hyperbola.

Claim2.21 Let Πv : R3 → ω be non-degenerate and let ℓ ⊂ ω be a line through the origin O
such that ℓ ∩ Cv ̸= ∅. Let ζ be the plane through ℓ and parallel to v. Then H ∩ ζ is an ellipse
(hyperbola) iff Cv is a hyperbola (ellipse).

Proof. As in the proof of Claim 2.15 it is enough to prove the result for

v = λj+ nk with λ2 − n2 ̸= 0. (2.42)

Therefore, taking into account formula (2.27), Cv ⊂ ω has equation

x2 +

(
n2

n2 − λ2

)
y2 = ρ2 with ρ > 0. (2.43)

Now, by hypothesis, there exits a point L = L(xL, yL, 0) ∈ ℓ ∩ Cv . By (2.43) the coordinates of
L must then satisfy the relation

n2
(
x2L + y2L

)
− λ2x2L =

(
n2 − λ2

)
ρ2. (2.44)

On the other hand, ζ is the plane through OL and parallel to v. Thus ζ has equation

ζ : (nyL)x− (nxL)y + (λxL)z = 0. (2.45)

Noting (2.44), by Claim 2.5, we deduce that:
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� H ∩ ζ is an ellipse ⇔ n2 − λ2 < 0 ⇔ Cv is a hyperbola;

� H ∩ ζ is a hyperbola ⇔ n2 − λ2 > 0 ⇔ Cv is an ellipse. 2

Claim2.22 Given Πv : R3 → ω, let ζ be a plane through O and parallel to v. Let E ⊂ ζ be an
ellipse with center O and let Πv(E) = MN, for suitable M,N ∈ ω ∩ ζ .

1) Let (OQ1, OQ2) be a pair of conjugate semi-diameters for E . If P1 = Πv(Q1) and P2 =
Πv(Q2), then we have

|MN |2 = 4
(
|OP1|2 + |OP2|2

)
. (2.46)

2) If P1, P2 ∈ ω∩ζ satisfy (2.46), then there are Q1, Q̂1, Q2, Q̂2 ∈ E such that Π−1
v (P1)∩E ={

Q1, Q̂1

}
, Π−1

v (P2) ∩ E =
{
Q2, Q̂2

}
and (OQ1, OQ2), (OQ̂1, OQ̂2) are distinct pairs of

conjugate semi-diameters for E .

Proof. 1) To begin with, we introduce orthogonal coordinates h, k in the plane ζ such that
O = (0, 0) and

E :
h2

a2
+

k2

b2
= 1 with a, b > 0. (2.47)

In this situation it is well known that OQ1, OQ2 are conjugate semi-diameters for E if and only
if there is θ ∈ [0, 2π) such that

Q1 =
(
a cos θ, b sin θ

)
and Q2 = ±

(
a sin θ,−b cos θ

)
. 14 (2.48)

Moreover, since Πv : R3 → ω is linear, given a unit vector u such that u ∥ ω ∩ ζ , there are
α, β ∈ R (not both zero) such that

−−→
OP1 =

(
aα cos θ + bβ sin θ

)
u and

−−→
OP2 = ±

(
aα sin θ − bβ cos θ

)
u, (2.49)

for all θ ∈ [0, 2π). From (2.49) we immediately have

|OP1|2 + |OP2|2 = (aα)2 + (bβ)2 for all θ ∈ [0, 2π) (2.50)

and, in particular,
|OM |2 = |ON |2 = (aα)2 + (bβ)2 , (2.51)

because Π(Q1) = M or N when Π(Q2) = O , that is, when OQ2 is parallel to the projection
direction v. Hence, from (2.51) we deduce that |MN |2 = 4(aα)2 + 4(bβ)2 , because O = M+N

2 .

2) Conversely, let P1, P2 ∈ ω ∩ ζ such that the relation (2.46) is true. Before proceeding,
let’s remember that the ellipse E has oblique symmetry, in the direction of v, with respect to
the line, say lv , through O and parallel to the direction conjugate to that of v. Thus, if

Π−1
v (P1) ∩ E = {R1, R̂1} and Π−1

v (P2) ∩ E = {R2, R̂2},

it is clear that the points R1 and R2 are obliquely symmetrical (in the direction of v and with
respect to lv ) to R̂1 and R̂2 , respectively. In addition, we know that R1 = R̂1 ⇔ R1 ∈ lv
⇔ P1 = M or N (i.e., P2 = O, by (2.46)) and, similarly, for the couple R2, R̂2 .

14 See [9], p. 39.



r. manfrin 15

Now, starting for instance from R1 , we certainly have

R1 = (a cos θ1, b sin θ1) for a suitable θ1 ∈ [0, 2π). (2.52)

By (2.46) and taking into account (2.49) and (2.50), one of the following must hold:

P2 = Πv

(
a sin θ1,−b cos θ1

)
or P2 = Πv

(
− a sin θ1, b cos θ1

)
, (2.53)

because in ω ∩ ζ there are only two points at a distance of 1
2

√
|MN |2 − 4|OP1|2 from O .

Assuming, for example, that the second of (2.53) holds, we define

Q1 = R1 = (a cos θ1, b sin θ1) and Q2 = (−a sin θ1, b cos θ1).
15 (2.54)

Then, by the condition (2.48) above, (OQ1, OQ2) is a pair of conjugate semi-diameters such
that Πv(Q1) = P1 and Πv(Q2) = P2 . Finally, denoting with Q̂1 and Q̂2 the symmetric to Q1

and Q2 respectively, we can easily see that

(OQ̂1, OQ̂2) (2.55)

gives a pair of conjugate semi-diameters such that (OQ̂1, OQ̂2) ̸= (OQ1, OQ2). Indeed, let us
suppose, for instance, that Q̂1 = Q1 . Then, as we observed above, P1 = M or N and P2 = O.
But, in turn, the condition P2 = O implies Q̂2 ̸= Q2 . 2

To conclude, we assume that OP1, OP2 ⊂ ω do not both vanish and that OP1 ∥OP2 . Then
we consider the degenerate ellipse EP1,P2 = MN , according to Def. 1.8. Applying Claims 2.21
and 2.22, we deduce the following:

Claim2.23 Let Πv : R3 → ω be non-degenerate and such that Cv is a hyperbola. Besides, let
EP1,P2 = MN be a degenerate ellipse inscribed in Cv and let ζ be the plane through MN and
parallel to the projection direction given by v.

Then H ∩ζ is an ellipse, with center O, such that Πv(H ∩ζ) = EP1,P2 . Furthermore, there
are Q1, Q

′
1, Q2, Q

′
2 ∈ H ∩ ζ such that Π−1

v (P1)∩H =
{
Q1, Q

′
1}, Π−1

v (P2)∩H = {Q2, Q
′
2} and

(OQ1, OQ2), (OQ′
1, OQ′

2) are distinct pairs of conjugate semi-diameters of H ∩ ζ.

Proof. Since MN is a segment through the origin O and M,N ∈ Cv , by Claim 2.21 we know
that E = H ∩ ζ is an ellipse, with center O . Then we can easily see that

Πv(E) = EP1,P2 . (2.56)

Indeed, assuming EP1,P2 = MN inscribed in the hyperbola Cv , we have: EP1,P2 ⊂ Πv(E),
because EP1,P2 ⊂ int(Cv), and also EP1,P2 ⊃ Πv(E) because M,N ∈ Cv . To proceed, we recall
that EP1,P2 = MN implies

|MN |2 = 4
(
|OP1|2 + |OP2|2

)
. (2.57)

Moreover, we note that

Π−1
v (Pi) ∩ H = Π−1

v (Pi) ∩ E for i = 1, 2

and that E has oblique symmetry, in the direction of v, with respect to the line lv = ζ ∩ πv .
16

We can therefore apply part 2) of Claim 2.22 with E = H ∩ ζ and lv = ζ ∩ πv and this
immediately gives the thesis. 2

15 Clearly, we have Q2 = R2 or R̂2.
16 It turns out that lv = ζ ∩ πv is the line, through O, parallel to the direction conjugate to that of v.
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2.5 Some properties of the tangent planes of H

Definition 2.24 Given P ∈ H , we denote with TH (P ) the tangent plane to H at P .

If P ∈ H , P = P (xP, yP, zP), we recall that

TH (P ) : xPx+ yPy − zPz = ρ2. (2.58)

Claim2.25 If P,Q ∈ H and O is the origin of coordinates, then

OP ∥ TH (Q) ⇔ OQ ∥ TH (P ). (2.59)

Proof. Indeed, given P = P (xP, yP, zP) ∈ H and Q = Q(xQ, yQ, zQ), we have that

OQ ∥ TH (P ) ⇔ xPxQ + yPyQ − zPzQ = 0. (2.60)

But the last condition of (2.60) is symmetric with respect to P and Q if P,Q ∈ H . 2

Taking into account the oblique symmetry of H with respect to the plane πv (Def. 1.2), applying
Claim 2.25 we easily get the following:

Corollary 2.26 If P,Q ∈ H and P ′, Q′ are πv−symmetric to P,Q respectively, then

OP ∥ TH (Q) ⇔ OP ′ ∥ TH (Q′) (2.61)

and
OP ∥ TH (Q′) ⇔ OQ ∥ TH (P ′). (2.62)

Proof. Recalling Def. 2.3 and Rem. 2.4, we easily have

Sv
(
TH (Q)

)
= TH (Q′), (2.63)

where Sv is the oblique symmetry with respect to the plane πv, in the direction of v. This
immediately gives (2.61). Then (2.62) follows from (2.61) and Claim 2.25. 2

Definition 2.27 Assuming OP ∦ OQ, we denote with ⟨O,P,Q⟩ the plane through the origin O
and the points P,Q. With C (P,Q) we indicate the admissible conic

C (P,Q)
def
= H ∩ ⟨O,P,Q⟩. (2.64)

Moreover, given R ∈ C (P,Q), we will denote with TC (P,Q)(R) ⊂ ⟨O,P,Q⟩ the tangent line to
C (P,Q) passing through the point R.

Remark 2.28 By (2.58) and (2.60), if P ∈ H then OP ∦ TH (P ). More generally,

P, Q ∈ H and OQ ∥ TH (P ) ⇒ OP ∦ OQ, (2.65)

because OP ∥ OQ ⇒ OP ∥ TH (P ). Further, if OP ∦ OQ and R ∈ H then

TH (R) ∩ ⟨O,P,Q⟩ ̸= ∅ ⇒ TH (R) ∦ ⟨O,P,Q⟩, (2.66)

because, by (2.58), O ̸∈ TH (R). In particular, this implies that the plane ⟨O,P,Q⟩ has always
transverse intersection (i.e., it is never tangent) with the hyperboloid H .
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Claim2.29 Suppose P, Q ∈ H . Then OP ∥ TH (Q) ⇔ OP ∦ OQ and C (P,Q) = H ∩
⟨O,P,Q⟩ is an ellipse with (OP, OQ) as a pair of conjugate semi-diameters.

Proof. ⇒ By the first part of Rem. 2.28, we already know that OP ∦ OQ. This implies
that C (P,Q) = H ∩ ⟨O,P,Q⟩ is an admissible conic in the sense of Def. 2.6. In particular,
C (P,Q) admits tangent line in each of its points. Besides, by the second part of Rem. 2.28,
TH (Q) ∦ ⟨O,P,Q⟩. Hence we deduce that the tangent line TC (P,Q)(Q) satisfies

TC (P,Q)(Q) = TH (Q) ∩ ⟨O,P,Q⟩, (2.67)

because it is clear that TC (P,Q)(Q) ⊂ TH (Q) and that TC (P,Q)(Q) ⊂ ⟨O,P,Q⟩.
Then, since OP ∥ ⟨O,P,Q⟩ and we suppose OP ∥ TH (Q), it follows that

OP ∥ TC (P,Q)(Q). (2.68)

Moreover, by Claim 2.25, OP ∥ TH (Q) ⇔ OQ ∥ TH (P ). So with the same arguments used
above we can prove that

OQ ∥ TC (P,Q)(P ). (2.69)

From this we deduce that C (P,Q) must be an ellipse, because (2.68) and (2.69) cannot both
be true if C (P,Q) is a hyperbola or a pair of distinct, parallel lines which are symmetric with
respect to the origin O. 17 Having proved that C (P,Q) is an ellipse, again from (2.68) and
(2.69), we deduce that (OP,OQ) is a pair of conjugate semi-diameters.

⇐ The inverse implication is immediate from the properties of semi-diameters of an ellipse. 2

To proceed, taking into account Defs. 1.5, 1.8, we can state the following:

Claim2.30 Let Πv : R3 → ω be a parallel projection. Let Q1, Q2 ∈ H such that OQ1 ∥TH (Q2)
and let P1 = Πv(Q1), P2 = Πv(Q2). Then we have:

(1) If OP1 ∦ OP2 , then Πv

∣∣∣
⟨O,Q1,Q2⟩

: ⟨O,Q1, Q2⟩ → ω defines an affine map such that

Πv(C (Q1, Q2)) = EP1,P2 . (2.70)

If we further suppose that Πv is non-degenerate, then EP1,P2 is tangent to Cv.

(2) If OP1 ∥OP2 , then Πv(C (Q1, Q2)) is the degenerate ellipse EP1,P2 determined by the seg-
ments OP1, OP2 . If we further assume that Πv is non-degenerate, then Cv is necessarily
a hyperbola and Cv circumscribes EP1,P2 (in the sense Def. 1.8).

Proof. By Claim 2.29, we already know that OQ1 ∦ OQ2 and that C (Q1, Q2) is an ellipse
with conjugate semi-diameters OQ1, OQ2. Besides, having Πv(Q1) = P1 , Πv(Q2) = P2 with
OQ1 ∦ OQ2 , the segments OP1, OP2 cannot both vanish. Hence we may consider the (eventually
degenerate) ellipse EP1,P2 .

17 If C (P,Q) is an hyperbola, just note what happens for H : x2

a2 − y2

b2
= 1. Given Q = (xq, yq) ∈ H and

P = (xp, yp), it follows that OP ∥ TH(Q) iff
xqxp

a2 − yqyp
b2

= 0. This means that xp = k
yq
b2

, yp = k
xq

a2 for some

k ∈ R. But then
x2
p

a2 − y2
p

b2
= k2

a2b2
(
y2
q

b2
− x2

q

a2 ) = − k2

a2b2
. Thus P /∈ H regardless of the value of k. If C (P,Q) is a pair

of distinct, parallel lines which are symmetric with respect to O, it is obvious that (2.68), (2.69) cannot hold.
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(1) In this case, we have that

OP1 ∦ OP2 and Πv(Q1) = P1, Πv(Q2) = P2 =⇒ v ∦ ⟨O,Q1, Q2⟩. (2.71)

So the restriction
Πv

∣∣∣
⟨O,Q1,Q2⟩

: ⟨O,Q1, Q2⟩ → ω

defines an affine transformation. Having Πv(OQ1) = OP1 and Πv(OQ2) = OP2 , it is therefore
clear that (2.70) holds. Next, we define

l = ⟨O,Q1, Q2⟩ ∩ πv .

Noting that l is a straight line through the origin O in ⟨O,Q1, Q2⟩, or all plane ⟨O,Q1, Q2⟩, it
is clear that

C (Q1, Q2) ∩ l ̸= ∅, (2.72)

because C (Q1, Q2) = H ∩ ⟨O,Q1, Q2⟩ is an ellipse, centered at O, in ⟨O,Q1, Q2⟩. Hence

C (Q1, Q2) ∩ (H ∩ πv) = H ∩ ⟨O,Q1, Q2⟩ ∩ πv = C (Q1, Q2) ∩ l ̸= ∅. (2.73)

This, in turn, implies that

EP1,P2 ∩ Πv

(
H ∩ πv

)
= Πv(C (Q1, Q2)) ∩ Πv

(
H ∩ πv

)
̸= ∅. (2.74)

Then, if we suppose Πv is non-degenerate, (2.74) gives

EP1,P2 ∩ Cv ̸= ∅. (2.75)

By Cor. 2.13, EP1,P2 and Cv are therefore tangent at any point of EP1,P2 ∩ Cv .

(2) Assuming OP1 ∥ OP2 it follows that ζ = ⟨O,Q1, Q2⟩ is the plane through O,P1, P2 and
parallel to the vector v. We can then apply part 1) of Claim 2.22 with E = C (Q1, Q2). It easily
follows that

Πv(C (Q1, Q2)) = MN = EP1,P2 , (2.76)

because we already know that OQ1, OQ2 are conjugate semi-diameters of C (Q1, Q2) and, by
(2.46), we have |MN |2 = 4

(
|OP1|2 + |OP2|2

)
.

To proceed, since C (Q1, Q2) is an ellipse in ζ = ⟨O,Q1, Q2⟩, we can prove as in case (1)
above that EP1,P2 ∩ Πv

(
H ∩ πv

)
̸= ∅. If we now suppose Πv is non-degenerate, we have

MN ∩ Cv ̸= ∅. (2.77)

This means that the line ℓ through M, N is a line through O such that ℓ ∩ Cv ̸= ∅. Then,
applying Claim 2.21, we see that Cv must be a hyperbola, because C (Q1, Q2) = H ∩ ζ is an
ellipse. 18 Finally, Cv circumscribes EP1,P2 . In fact, we have shown above that MN ∩ Cv ̸= ∅
and, by Cor. 2.13, we know that MN ⊂ int(Cv). So we have M,N ∈ Cv , since M,N (as well
Cv ) are symmetrical with respect to the origin O. 2

Remark 2.31 Under the assumptions of (1) of Claim 2.30 and taking into account Defs. 2.7,
2.8 and Cor. 2.13, if the projection Πv is non-degenerate we can also say that:

� Cv is inscribed in EP1,P2, if Cv is an ellipse. In particular, we have Cv = EP1,P2 if and
only if πv = ⟨O,Q1, Q2⟩.

� Cv circumscribes EP1,P2 if Cv is a hyperbola.
18 Noting (2.76), we may deduce directly from Cor. 2.13 that Cv must be a hyperbola. In fact, we have

O ∈ MN ⊂ Πv(H ) and this means that Cv cannot be an ellipse.
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3 Hyperbolic Pohlke’s projection in the circular case

In this section we will explicitly determine the hyperbolic Pohlke’s projection Πv : R3 → ω when
in Def. 1.4 we also assume that two of the segments OP1, OP2, OP3 are equal and perpendicular.
Before proceeding we recall that, according to Def. 1.2, the points P, P ′ are πv–symmetric if
P, P ′ are obliquely symmetrical with respect to the plane πv, in the direction of v. That is,
P ′ = Sv(P ) where Sv is the map introduced in Def. 2.3. Moreover, if Πv : R3 → ω is a hyperbolic
Pohlke’s projection in the sense of Def. 1.4, we note that:

Remark 3.1 Considering the symmetries Sv, with respect to πv, and Sk, with respect to the
plane πk = ω (i.e. the usual symmetry with respect to ω), it is immediate to see that:

� If Q1, Q2, Q3 ∈ H satisfy the conditions (1.13), (1.14) of Def. 1.4 then, by Cor. 2.26, also
the points Q′

1 = Sv(Q1), Q′
2 = Sv(Q2) Q′

3 = Sv(Q3) satisfy (1.13), (1.14). This means
that in Def. 1.4 the triads Q1, Q2, Q3 and Q′

1, Q
′
2, Q

′
3 are perfectly equivalent.

� Let us denote with Π̄v : R3 → ω the symmetric projection with respect to ω , i.e.,

Π̄v(P ) = Πv(Sk(P )) for P ∈ R3. (3.1)

Then Π̄v , with the points Sk(Q1), Sk(Q2) and Sk(Q3), still gives a hyperbolic Pohlke’s
projection for OP1, OP2, OP3 . Observe also that if v̄ = Sk(v), then

Π̄v = Πv̄ and Πv̄(H ∩ πv̄) = Πv(H ∩ πv). (3.2)

3.1 The circular case

We consider here the problem of determining the hyperbolic Pohlke’s projections Πv : R3 → ω
in the circular case. More precisely, for OP1,OP2,OP3 ⊂ ω such that

OP1 ⊥ OP2 and |OP1| = |OP2| = 1. (3.3)

To begin with, according to Def. 1.4, we need to find Πv : R3 → ω non-degenerate and then
Q1, Q2 ∈ H (ρ) such that

Πv(Q1) = P1 , Πv(Q2) = P2 with OQ1 ∥ TH (Q2).

Assuming such a projection exists, from (1) of Claim 2.30 we deduce that EP1,P2 must be tangent
to Cv . Since EP1,P2 is the circle with center O and radius r = 1, we have two possibilities:

� If Cv is an ellipse (circle), having to be inscribed in EP1,P2 (by (1) of Cor. 2.13), Cv must
have semi-major axis a = 1 (radius r = 1).

� If Cv is a hyperbola, having to circumscribe EP1,P2 (by (2) of Cor. 2.13), Cv must have
transverse semi-axis a = 1.

Then, from Claim 2.15 and Rem. 2.17, we conclude that:

Claim3.2 If (3.3) holds and if there is a hyperbolic Pohlke’s projection for OP1, OP2, OP3

(according to Def. 1.4), then ρ = 1. That is, we have

H = H (1) =
{
(x, y, z) ∈ R3

∣∣x2 + y2 − z2 = 1
}
. (3.4)
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After this, again assuming that the hyperbolic Pohlke’s projection Πv exists, we note that (3.3),
(3.4) imply P1, P2 ∈ H . Thus we must have:

P1 = Q1 or Q′
1 and P2 = Q2 or Q′

2 .
19 (3.5)

But to satisfy the conditions of Def. 1.4 it is necessary to set

Q1 = P1 and Q2 = P2 (3.6)

or, equivalently, Q′
1 = P1 and Q′

2 = P2 .
20 In fact, if we set Q1 = P1 and Q′

2 = P2, applying
Cor. 2.26, we find:

OQ3 ∥ TH (Q′
1) ⇔ OQ1 ∥ TH (Q′

3) ⇔ OP1 ∥ TH (Q′
3), (3.7)

OQ2 ∥ TH (Q3) ⇔ OQ′
2 ∥ TH (Q′

3) ⇔ OP2 ∥ TH (Q′
3). (3.8)

Now, from (2.60), it is easy to see that

OP1 ∥ TH (Q′
3) and OP2 ∥ TH (Q′

3) =⇒ OQ′
3 ⊥ ω 21 (3.9)

and the latter condition cannot be satisfied if Q′
3 ∈ H . Since the same argument works if we try

to define Q′
1 = P1 and Q2 = P2, we are forced to assume (3.6). Moreover, by choosing Q1 = P1

and Q2 = P2, we must also have

Q3 ̸= Q′
3 . (3.10)

Indeed, if Q3 = Q′
3 , from Cor. 2.26 and condition (1.14) we easily deduce that OP1 ∥ TH (Q3)

and OP2 ∥ TH (Q3). Hence, as in (3.9), we find OQ3 ⊥ ω which cannot be satisfied. In
conclusion, noting that (3.10) implies Q3Q

′
3 ∥ v, we can say that:

Conditions 3.3 Having fixed the points Q1 = P1, Q2 = P2 as in (3.6), to have a hyperbolic
Pohlke’s projection for OP1, OP2, OP3 as in (3.3), it is necessary and sufficient to determine
Q3, Q

′
3 ∈ H (1), Q3 ̸= Q′

3 , such that the following conditions are true:

(a) OP2 ∥ TH (OQ3) and OP1 ∥ TH (OQ′
3)
(
i.e., OQ3 ∥ TH (OP ′

1), by Cor. 2.26
)
;

(b) Q3Q
′
3 ∦ ω , because Q3Q

′
3 gives the direction of projection onto ω ;

(c) Q3, Q
′
3, P3 are collinear (i.e., Πv(Q3) = Πv(Q

′
3) = P3);

(d) v =
−−−−→
Q3Q

′
3 gives a non-degenerate projection direction.

19 Given Q ∈ H , by (2.60) we have OP ∥ TH (Q) ⇔ xPxQ + yPyQ − zPzQ = 0. Therefore, if P1, P2 ∈ ω are
such that OP1 ⊥ OP2, then OP1 ∥ TH (P2) and OP2 ∥ TH (P1).

20 In the following will not distinguish between these two possibilities because, by Rem. 3.1, we know that the
triads Q1, Q2, Q3 and Q′

1, Q
′
2, Q

′
3 are equivalent.

21 Given Q = (xQ, yQ, zQ) ∈ H and P1, P2 ∈ ω such that OP1 ∦ OP2, we have that OP1, OP2 ∥ TH (Q) ⇔
xQ = yQ = 0. But the latter condition is equivalent to OQ ⊥ ω .
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3.2 Explicit determination of Πv in the circular case

To proceed, we may suppose that the coordinate axes x, y are oriented in space such that

P1 =

 1
0
0

, P2 =

 0
1
0

 and P3 =

 x
y
0

. (3.11)

In particular, in this system we have

−−→
OP3 = x

−−→
OP1 + y

−−→
OP2 . (3.12)

Then, taking into account (2.60), we see that (a) in Cond. 3.3 is satisfied iff Q3 ∈ H ∩ {y = 0}
and Q′

3 ∈ H ∩ {x = 0} . Thus we can express Q3 and Q′
3 in the form

Q3 =

 cosh∗α
0

sinhα

 and Q′
3 =

 0
cosh∗β
sinhβ

 (α, β ∈ R), (3.13)

where, for simplicity, we have set

cosh∗t
def
= ± cosh t. 22 (3.14)

Having (3.13), it is clear that Q3 ̸= Q′
3 and that (b) in Cond. 3.3 holds iff

sinhα ̸= sinh β. (3.15)

Besides, (c) of Cond. 3.3 is verified iff P3 = Q3 + t
−−−−→
Q3Q

′
3 for some t ∈ R. That is, x

y
0

 =

 cosh∗α
0

sinhα

+ t

 − cosh∗α
cosh∗β

sinhβ − sinhα

 for some t ∈ R. (3.16)

Now, assuming that (3.15) holds, we will first study the solvability of the system (3.16) and
then we will verify if also (d) of in Cond. 3.3 is satisfied, i.e., if the projection direction found is
non-degenerate. We will distinguish two cases to this aim:

3.3 Case OP3 ∥ OP1 or OP3 ∥ OP2

Suppose first OP3 ∥ OP2, that is x = 0. Since cosh∗α ̸= 0, the first equation of (3.16) gives
t = 1. Then, considering also the third equation, we find sinh β = 0. Thus cosh∗β = ±1 and
sinhα ̸= 0. Summarizing up, when x = 0 system (3.16) is solvable iff

P3 = ±

 0
1
0

. (3.17)

22 Just to have a simple parametrization of the entire hyperbolas H ∩ {y = 0} and H ∩ {x = 0}, suitable for
subsequent calculations.
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If (3.17) holds, then we have

Q3 =

 cosh∗α
0

sinhα

 with α ̸= 0, Q′
3 = P3 . (3.18)

Noting that the projection direction is given by v =
−−−−→
Q3Q

′
3 = −(cosh∗α) i ± j − (sinhα)k,

condition (d ) is certainly true because (cosh∗ α)2 + 1− sinh2 α = 2. In conclusion, when x = 0
there are no hyperbolic Pohlke’s projections if (3.17) fails, infinitely many if (3.17) holds. 2

Now suppose OP3 ∥ OP1, that is y = 0. Reasoning as in the previous case, we find that when
y = 0 (3.16) is solvable iff

P3 = ±

 1
0
0

. (3.19)

If (3.19) holds, then we have

Q3 = P3 , Q′
3 =

 0
cosh∗β
sinhβ

 with β ̸= 0. (3.20)

As above, (d ) of Cond. 3.3 is true because v =
−−−−→
Q3Q

′
3 = ± i + (cosh∗β)j + (sinh β)k. Thus

there are no hyperbolic Pohlke’s projections if (3.19) fails, infinitely many if (3.19) holds. 2

Summing up, taking into account Cond.3.3, we have proved that:

Lemma3.4 If (3.3) is verified and OP3 ∥OP1 (or OP3 ∥OP2) then there are infinitely many
hyperbolic Pohlke’s projection for OP1,OP2,OP3 if |OP3| = 1, none if |OP3| ̸= 1.

3.4 Case OP3 ∦ OP1 and OP3 ∦ OP2 , that is x, y ̸= 0

We note first that the condition x, y ̸= 0 in (3.16) implies

sinhα, sinhβ ̸= 0. (3.21)

Indeed, if sinhα = 0, (3.15) and the third equation of (3.16) give t = 0. Then the second
equation of (3.16) implies y = 0, contrary to our assumption. Similarly we find that sinh β ̸= 0.

Taking into account this fact, we deduce now a set of necessary conditions for the point P3

to be collinear with Q3, Q
′
3 (i.e., to satisfy (3.16) for some t ∈ R) when (3.15) and (3.21) hold.

After that, we will prove that these conditions are also sufficient.

Assuming that (3.16) is true, by (3.15) and the third equation of (3.16), we have

t =
sinhα

sinhα− sinhβ
. (3.22)

From (3.21) it follows that t ̸= 0, 1 and that

x = cosh∗α− cosh∗α sinhα

sinhα− sinhβ
⇒ x ̸= 0, cosh∗α; (3.23)

y =
cosh∗β sinhα

sinhα− sinhβ
⇒ y ̸= 0, cosh∗β. (3.24)
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Then
x

cosh∗α
+

y

cosh∗β
= 1. (3.25)

From (3.24), (3.25) we obtain

cosh∗α =
x cosh∗β

cosh∗β − y
,

sinhα =
y sinhβ

y − cosh∗β
,

(3.26)

because, by (3.24), we know that y ̸= cosh∗β .
Next, since (cosh∗α)2 − sinh2 α = 1, from (3.26) we have

x2(cosh∗β)2 − y2 sinh2 β = (y − cosh∗β)2. (3.27)

Hence, simplifying the expression above, we find[(
x2 − y2 − 1) cosh∗β + 2y

]
cosh∗β = 0. (3.28)

Since cosh∗β ̸= 0 and (by (3.24)) y ̸= 0 , we deduce that:

x2 − y2 − 1 ̸= 0, (3.29)

and then

cosh∗β =
−2y

x2 − y2 − 1
. (3.30)

Noting that x ̸= 0, cosh∗α (see (3.23)) by similar arguments we can derive that

y2 − x2 − 1 ̸= 0 (3.31)

and

cosh∗α =
−2x

y2 − x2 − 1
. (3.32)

Finally, since (3.21) is equivalent to | cosh∗α| > 1, | cosh∗β| > 1, from the expressions (3.30),
(3.32) we deduce the conditions:

(i)

∣∣∣∣ 2y

x2 − y2 − 1

∣∣∣∣ > 1 and (ii)

∣∣∣∣ 2x

y2 − x2 − 1

∣∣∣∣ > 1. (3.33)

Summing up, we have:

Claim3.5 If (3.15), (3.21) are verified and if P3 = t(x, y, 0) is given by formula (3.16), then
the necessary conditions (3.29), (3.31) and (3.33) are satisfied.

Definition 3.6 We will denote with Σ the subset of R2 where (3.29), (3.31) hold, i.e.,

Σ
def
=
{
(x, y)

∣∣ x2 − y2 ̸= ±1
}
. (3.34)

The solution region of (3.33) is given by the following:
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Lemma3.7 A pair (x, y) ∈ Σ satisfies the conditions (3.33) (i) and (ii) iff

|x|+ |y| > 1 and
∣∣|x| − |y|

∣∣ < 1 (3.35)

or, equivalently,

(x+ y + 1)(x+ y − 1)(x− y + 1)(x− y − 1) < 0. (3.36)

Proof. The inequalities of (3.33) is invariant under symmetry with respect to the coordinate
axes, i.e., on replacing (x, y) with (±x,±y). So it is sufficient to solve (3.33) for x, y ≥ 0.
Besides, we can obtain the first of (3.33) from the second, and vice versa, by permutation of the
variables x, y . Hence it is sufficient to solve the second inequality of (3.33).

To begin with, for (x, y) ∈ Σ with x, y ≥ 0, inequality (3.33) (ii) is equivalent to

−2x < y2 − x2 − 1 < 2x, (3.37)

that is

(x− 1)2 < y2 < (x+ 1)2. (3.38)

which, in turn, is equivalent to

|x− 1| < y < x+ 1, (3.39)

because x+ 1 ≥ 0 and y ≥ 0. Next, it easy to see that{
(x, y)

∣∣ |x− 1| < y < x+ 1
}
=
{
(x, y)

∣∣x+ y > 1, |x− y| < 1
}
⊂
{
x, y ≥ 0

}
. (3.40)

Thus, for x, y ≥ 0, the solution region of (3.33) (ii) is given by

Ω = Σ ∩
{
(x, y)

∣∣x+ y > 1, |x− y| < 1
}
. (3.41)

The set Ω in (3.41) is symmetric with respect to x, y . By the previous considerations, Ω gives
also the solution region of (3.33) (i) for x, y ≥ 0 and, taking into account the symmetry with
respect to the axes, from this we immediately obtain (3.35). Finally, it is easy to verify the
equivalence of (3.35) and (3.36), because they define the same subset of R× R. 2

So far, we have proved that:

Claim3.8 If the conditions (3.15), (3.21) are verified and if P = t(x, y, 0) is given by (3.16),
then (x, y) ∈ Σ and

g(x, y)
def
= (x+ y + 1)(x+ y − 1)(x− y + 1)(x− y − 1) < 0. 23 (3.42)

The converse is also true:

Claim3.9 If a point P = t(x, y, 0) is such that (x, y) ∈ Σ and (3.42) holds, then P is given by
formula (3.16) for suitable α, β satisfying (3.15), (3.21).

23 Note that condition (3.42) implies x, y ̸= 0.
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Proof. Let us suppose that (x, y) ∈ Σ satisfies (3.42). Then, by Lem. 3.7, there are (unique
except for the sign) α, β such that

cosh∗α =
−2x

y2 − x2 − 1
and cosh∗β =

−2y

x2 − y2 − 1
. (3.43)

Since | cosh∗t| > 1 ⇒ sinh t ̸= 0, condition (3.21) is certainly verified. With cosh∗α, cosh∗β
such that (3.43) holds, the first two equations of (3.16) are satisfied by

t =
y2 − x2 + 1

2
. (3.44)

Then, with t as in (3.44), the third equation of (3.16) is verified iff

sinhβ

sinhα
= − y2 − x2 − 1

x2 − y2 − 1
. (3.45)

Now, introducing the expressions (3.43) inside the identity sinh2 t = (cosh∗t)2 − 1, we obtain

sinh2 α = − g(x, y)

(y2 − x2 − 1)2
and sinh2 β = − g(x, y)

(x2 − y2 − 1)2
, (3.46)

where g(x, y) is the quantity defined in (3.42). Since we are assuming g(x, y) < 0, we may
conclude that (3.45) holds iff

(sinhα, sinhβ) = ±

( √
−g(x, y)

y2 − x2 − 1
,
−
√
−g(x, y)

x2 − y2 − 1

)
. (3.47)

Finally, it remains to note that for (x, y) ∈ Σ the relation (3.45) gives also the inequality
sinhα ̸= sinh β, i.e., condition (3.15). In conclusion, we have proved that there are α, β such
that both conditions (3.15), (3.21) hold and P = t(x, y, 0) satisfies formula (3.16). 2

Recalling (3.13), (3.43) and (3.47), we may conclude the following:

Claim3.10 Let us suppose x, y ̸= 0. Then system (3.16) with condition (3.15) is solvable ⇔
(x, y) ∈ Σ and (3.42) holds. Moreover, if (x, y) ∈ Σ and (3.42) holds,

Q3 =
1

y2 − x2 − 1

 −2x
0

δ
√
−g(x, y)



Q′
3 =

1

y2 − x2 + 1

 0
2y

δ
√
−g(x, y)


with δ = ±1, (3.48)

where g(x, y) is the function defined by (3.42).

Proof. As we have already observed at the beginning of section 3.4,

x, y ̸= 0 and (3.15), (3.16) =⇒ (3.21). (∗)
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Therefore, it is sufficient to apply Claim 3.8 and Claim 3.9. 2

The previous statement gives the necessary and sufficient conditions for the existence of
Q3, Q

′
3 such that (a), (b), (c) of Cond. 3.3 hold, i.e., such that there is a projection Πv satisfying

(1.13) and (1.14) of Def. 1.4, when (3.3) holds and P3 =
t(x, y, 0) with x, y ̸= 0.

So, in order to have a hyperbolic Pohlke’s projection, it only remains to verify if (d ) of Cond. 3.3
holds when Q3, Q

′
3 are given by (3.48). To this end, noting (3.13), we write:

v =
−−−−→
Q3Q

′
3 = −(cosh∗α)i+ (cosh∗β)j + (sinh β − sinhα)k, (3.49)

with cosh∗α, cosh∗β as in (3.43) and sinhα, sinh β as in (3.47). Then we have:

Claim3.11 Let P3 = t(x, y, 0) with (x, y) ∈ Σ such that (3.42) holds. Then the projection
direction v = li+mj+ nk given by (3.49) satisfies

l2 +m2 − n2 = 4
x2 + y2 − 1

(x2 − y2)2 − 1
. (3.50)

Proof. Assuming (x, y) ∈ Σ and (3.42), the expressions (3.43) and (3.47) are well defined real
numbers. Then writing v as in (3.49) and using (3.47), we find that

l2 +m2 − n2 = (cosh∗α)2 + (cosh∗β)2 − (sinh β − sinhα)2

= 2
(
1 + sinhα sinhβ

)
= 2

[
1 +

g(x, y)

(y2 − x2 − 1)(x2 − y2 − 1)

]
= 2

[
1− g(x, y)

(x2 − y2)2 − 1

]
= 4

x2 + y2 − 1

(x2 − y2)2 − 1
. 2

(3.51)

Finally, taking into account Rem. 3.1, Claim 3.2, Cond.3.3 and summing up, we have:

Lemma3.12 If (3.3) is verified and if OP3 ∦ OP1, OP2 , then there is a hyperbolic Pohlke’s
projection Πv for OP1, OP2, OP3 if and only if

−−→
OP3 = x

−−→
OP1 + y

−−→
OP2 , (3.52)

with (x, y) such that (3.42) holds and

f(x, y)
def
= (x2 + y2 − 1)(x2 − y2 − 1)(x2 − y2 + 1) ̸= 0. (3.53)

If the conditions (3.42) and (3.53) are verified, then the hyperbolic Pohlke’s projection Πv

is unique up to symmetry with respect to the plane ω. The conic Cv is unique and Cv is an
ellipse if f(x, y) < 0, while Cv is a hyperbola if f(x, y) > 0.

Proof. Let us first note that

f(x, y) ̸= 0 ⇔ (x, y) ∈ Σ and x2 + y2 ̸= 1. (3.54)
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Suppose now that (3.42), (3.53) are true. Then the existence of a projection Πv : R3 → ω
satisfying (1.13), (1.14) of Def. 1.4 follows from Claim 3.10. Thanks to Claim 3.11 and (3.54),
the condition f(x, y) ̸= 0 also implies that (d ) of Cond. 3.3 is true, i.e., Πv is non-degenerate.
Hence Πv is a hyperbolic Pohlke’s projection for OP1, OP2, OP3 .

Conversely, let Πv be a hyperbolic Pohlke’s projection for OP1, OP2, OP3 . Taking into
account Cond. 3.3 and the arguments at the beginning of Section 3.2, we deduce from Claim 3.10
that (x, y) ∈ Σ and (3.42) holds. Furthermore, the points Q3, Q

′
3 are necessarily given by (3.48).

Since Πv is non-degenerate, (3.50) of Claim. 3.11 gives x2 + y2 ̸= 1. By (3.54) we can finally
see that also (3.53) holds.

As for the uniqueness of Πv , we recall that by Claim 3.2 we necessarily have ρ = 1, that is

H = H (1). Furthermore, the vector v =
−−−−→
Q3Q

′
3 , given by Claim 3.10, is uniquely determined

up to choosing the plus and minus sign in formula (3.48). This means that we can obtain only
two projections, Πv and Π̄v , which are symmetric with respect to the plane ω (according to
the second part of Rem. 3.1). Hence, taking into account that H = H (1), from (3.2) we may
conclude that Cv = Πv(H ∩ πv) is unique. Finally, assuming that the hyperbolic Pohlke’s
projection exists, by Cor. 2.11 and (3.50) above, the conic Cv is an ellipse or a hyperbola
depending on whether it is f(x, y) > 0 or f(x, y) < 0. 2

4 Proof of Theorem1.7

(1) ⇒ (2). It is sufficient to apply part (1) of Claim 2.30 first and then Cor. 2.13.
Indeed, since we are assuming OPi ∦ OPj (1 ≤ i < j ≤ 3) by the conditions (1.13), (1.14) of
Def. 1.4 and part (1) of Claim 2.30, we have:

Πv(Q1) = P1, Πv(Q2) = P2 and OQ1 ∥ TH (Q2) ⇒ Πv(C (Q1, Q2)) = EP1,P2 , (4.1)

Πv(Q2) = P2, Πv(Q3) = P3 and OQ2 ∥ TH (Q3) ⇒ Πv(C (Q2, Q3)) = EP2,P3 (4.2)

and, noting that Πv(Q
′
1) = P1 ,

Πv(Q3) = P3, Πv(Q
′
1) = P1 and OQ3 ∥ TH (Q′

1) ⇒ Πv(C (Q3, Q
′
1)) = EP3,P1 . (4.3)

Furthermore, EP1,P2 , EP2,P3 , EP3,P1 are tangent to

Cv = Πv(H ∩ πv). (4.4)

Then, since EP1,P2 , EP2,P3 , EP3,P1 ⊂ Πv(H ), by Cor. 2.13 we finally deduce that:

� Cv is inscribed in EP1,P2 , EP2,P3 , EP3,P1 if Cv is an ellipse;

� Cv circumscribes EP1,P2 , EP2,P3 , EP3,P1 if Cv is a hyperbola.

In conclusion C = Cv is a hyperbolic Pohlke’s conic for OP1, OP2, OP3 .

(2) ⇒ (1). This implication can be obtained by first applying Claim 2.15, Rem. 2.17 and then
Claim 2.19 and the result of AppendixA, in particular ClaimA.1.
Indeed, let C be a hyperbolic Pohlke’s conic for OP1, OP2, OP3 . We fix H = H (ρ) with

ρ = major/transverse semi-axis of C (ρ = radius, if C is a circle). (4.5)
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Then from the three cases of Rem. 2.17 we obtain, up to symmetry with respect to the plane ω ,
the projection direction, i.e., the vector v. Moreover, by Claim 2.18, v is non-degenerate.
This means that we can realized C as a projection of a section the hyperboloid H = H (ρ).
More precisely, we have:

C = Πv(H ∩ πv)
def
= Cv . (4.6)

After that, we consider EP1,P2 , EP2,P3 and EP3,P1 , which are tangent to Cv , by Def. 1.6. Starting
with EP1,P2 , by 1) of Claim 2.19 there is a plane π, through the origin O, such that H ∩ π is
an ellipse and Πv(H ∩ π) = EP1,P2 .

24 Then, by 2) of Claim 2.19, there are Q1, Q2 ∈ H ∩ π
such that Π(Q1) = P1 , Π(Q2) = P2 and OQ1, OQ2 are conjugate semi-diameters of the ellipse
H ∩ π. This later fact implies OQ1 ∥ TC (Q1,Q2)(Q2). Then

OQ1 ∥ TC (Q1,Q2)(Q2) and TC (Q1,Q2)(Q2) ⊂ TH (Q2) ⇒ OQ1 ∥ TH (Q2), (4.7)

So the first condition of (1.14) is satisfied. To proceed further, we consider EP2,P3 . Again from
1) and 2) of Claim 2.19 we can find a plane π̃, through O and Q2 , such that H ∩ π̃ is an ellipse
and Πv(H ∩ π̃) = EP2,P3 . Besides, we can also find a point Q3 ∈ H ∩ π̃ such that Π(Q3) = P3

and OQ2, OQ3 are conjugate semi-diameters of H ∩ π̃ . As above, we deduce that

OQ2 ∥ TH (Q3). (4.8)

So, the second condition of (1.14) holds. Finally, we consider the ellipse EP3,P1 . Noting that

Π−1(P1) ∩ H = {Q1, Q
′
1}, (4.9)

and reasoning as above, it is clear that at least one of the following must be true:

OQ3 ∥ TH (Q1) or OQ3 ∥ TH (Q′
1). (4.10)

But, by ClaimA.1, we cannot have the sequence

OQ1 ∥ TH (Q2), OQ2 ∥ TH (Q3) and OQ3 ∥ TH (Q1), (4.11)

with Q1, Q2, Q3 ∈ H . Hence the second (and only the second) of (4.10) is true. In conclusion,
we have found Q1, Q2, Q3 ∈ H such that (1.13) and (1.14) hold.

4.1 The equivalence of (1),(2) with (3)

To prove that (1),(2) ⇔ (3) when OP1, OP2, OP3 are non-parallel, we resort to an appropriate
circular case. More precisely, let N1, N2 ∈ ω such that

ON1 ⊥ ON2 and |ON1| = |ON2| = 1. (4.12)

Since OP1 ∦ OP2, we may consider the affine transformation Φ : ω → ω defined by

Φ(O + x
−−→
OP1 + y

−−→
OP2 )

def
= O + x

−−→
ON1 + y

−−→
ON2 for x, y ∈ R. (4.13)

24 From (2.36) we know that Πv

∣∣
π
: π → ω is an affine transformation. Hence H ∩ π must be an ellipse.
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It is clear that Φ(P1) = N1, Φ(P2) = N2 . Besides, if
−−→
OP3 = h

−−→
OP1 + k

−−→
OP2, then

N3
def
= Φ(P3) = O + h

−−→
ON1 + k

−−→
ON2 . (4.14)

Hence −−→
ON3 = h

−−→
ON1 + k

−−→
ON2 and ON3 ∦ ON1, ON2, (4.15)

because OP3 ∦ OP1, OP2 (i.e., h, k ̸= 0).
As it is known, an affine transformation maps conjugate semi-diameters of a central conic

into conjugate semi-diameters of the transformed conic. This means that Φ(EP1,P2) = EN1,N2 ,
Φ(EP2,P3) = EN2,N3 and Φ(EP3,P1) = EN3,N1 . Besides, if C is a hyperbola (ellipse), with center
O, which circumscribes (is inscribed in) EP1,P2 , EP2,P3 , EP3,P1 , then Φ(C) is a hyperbola (ellipse)
centered at O which circumscribes (is inscribed in) EN1,N2 , EN2,N3 , EN3,N1 . The converse is also
true, because Φ−1 : ω → ω is still an affine transformation. Hence, according to Def. 1.6, we can
state the following:

Claim4.1 If C is a hyperbolic Pohlke’s conic for OP1, OP2, OP3 , then Φ(C) is a hyperbolic
Pohlke’s conic for ON1, ON2, ON3 , and vice versa.

(1), (2) ⇒ (3). Now let us suppose that (2) holds, namely that there is a hyperbolic Pohlke’s
conic C for OP1, OP2, OP3. Then

Co = Φ(C) (4.16)

is a hyperbolic Pohlke’s conic for ON1, ON2, ON3. Hence, having already proved that (1) ⇔
(2), there is a hyperbolic Pohlke’s projection for ON1, ON2, ON3. By (4.12) and (4.15) we
can therefore apply Lem. 3.12 to ON1, ON2, ON3. Thus we conclude that h, k must satisfy the
conditions (1.15) and (1.16).

(3) ⇒ (1), (2). Conversely, let us suppose that (3) hold, i.e., h, k satisfy the conditions (1.15)
and (1.16). Then, by Lem. 3.12, there is a hyperbolic Pohlke’s projection for ON1,ON2,ON2 .
By the equivalence (1) ⇔ (2), we deduce the existence of a hyperbolic Pohlke’s conic, say Co ,
for ON1,ON2,ON3 . Then,

C = Φ−1(Co) (4.17)

is a hyperbolic Pohlke’s conic for OP1, OP2, OP3. Thus we have proved that (2) holds.

4.2 Uniqueness of Πv, C and conic type of C
The uniqueness properties of hyperbolic Pohlke’s conic C and of hyperbolic Pohlke’s projection
Πv follow immediately from the circular case studied in Section 3. In fact, if we assume condition
(3.3), by Claim 3.2 we necessarily have ρ = 1, that is H = H (1). Besides, by Lem. 3.12, the

projection direction, given by the vector
−−−−→
Q3Q

′
3 in (3.49), is unique up to symmetry with respect

to the plane ω . That is, we have:

v ∥ v+ or v ∥ v− with v± = li + mj ± nk, (4.18)

for suitable l,m, n such that n ̸= 0 and l2 +m2 − n2 ̸= 0. Therefore we have the uniqueness of
the hyperbolic Pohlke’s conic in the circular case, because

C = Πv+(H ∩ πv+) = Πv−(H ∩ πv−). (4.19)
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Having proved the uniqueness in the circular case, applying the affine transformation Φ : ω → ω
introduced un (4.13), we deduce the uniqueness of the hyperbolic Pohlke’s conic in general. As
for the hyperbolic Pohlke’s projection Πv : R3 → ω , it is enough to recall that the hyperbolic
Pohlke’s conic C uniquely determines the hyperboloid H = H (ρ) and, up to symmetry with
respect to the plane ω , the projection direction v. See Rem. 2.17.

Finally, since C and Φ(C) are conic of the same type, by Lem. 3.12 it is clear that the
hyperbolic Pohlke’s conic C is an ellipse if f(h, k) < 0, while it is a hyperbola if f(h, k) > 0.

5 Proof of Theorem1.10

We will first show that the equivalence (1) ⇔ (2) of Thm. 1.7 remains valid under the hypotheses
of Thm. 1.10, if we allow degenerate ellipses, in the sense of Def. 1.8, and if we replace Def. 1.6
with Def. 1.9 as hyperbolic Pohlke’s conic definition.
According to the hypotheses, we will assume that OP1, OP2, OP3 are not contained in a line,
but two of them are parallel to each other. More precisely, in the following we will suppose that

OP1 ∦ OP2 and OP2 ∥ OP3 . (5.1)

(1) ⇒ (2). We apply part (1) of Claim 2.30 (as in the proof of Thm. 1.7) if OPi ∦ OPj , and part
(2) of Claim 2.30 if OPi ∥ OPj . To begin with, since we suppose OP1 ∦ OP2 , by the conditions
(1.13), (1.14) of Def. 1.4 and part (1) of Claim 2.30 we deduce that

Πv(C (Q1, Q2)) = EP1,P2 and Cv is tangent to EP1,P2 . (5.2)

To proceed, we consider then the pair OP2, OP3 . In this case OP2 ∥ OP3 , thus EP2,P3 is a
degenerate ellipse in the sense of Def. 1.8. Hence, by part (2) of Claim 2.30, we deduce that

Πv(C (Q2, Q3)) = EP2,P3 and that Cv is a hyperbola circumscribing EP2,P3 .

Knowing that Cv is a hyperbola, from (5.2) and Cor. 2.13 it also follows that Cv circumscribes
the ellipse EP1,P2 . Finally, we consider the pair OP3, OP1 . Applying as above (1) of Claim 2.30
(if OP3 ∦ OP1) or (2) of Claim 2.30 (if P3 = O), we find that

Πv(C (Q3, Q
′
1)) = EP3,P1 and Cv circumscribes EP3,P1 . (5.3)

In conclusion, we have proved that Cv is a hyperbola circumscribing EP1,P2 , EP2,P3 , EP3,P1 . Hence
Cv is a hyperbolic Pohlke’s conic, in the sense of Def. 1.9, for OP1, OP2, OP3 .

(2) ⇒ (1). Let C be a hyperbolic Pohlke’s conic in the sense of Def. 1.9. By applying Claim 2.15
and Rem. 2.17 (as in the proof of Thm. 1.7) we can determine the hyperboloid H = H (ρ) and
the projection direction, represented by v, up to symmetry with respect to the plane ω . It
automatically follows that v is non-degenerate (by Claim 2.18) and that

C = Πv(H ∩ πv)
def
= Cv .

After this we consider the (eventually degenerate) ellipses EP1,P2 , EP2,P3 , EP3,P1 . Using 1) and 2)
of Claim 2.19 (if OPi ∦ OPj ) or Claim 2.23 (if OPi ∥ OPj ) and then the result of AppendixA, we
can show that there are Q1, Q2, Q3 ∈ H such that the conditions (1.13), (1.14) of Def. 1.4 are
verified. In this way we prove that Πv is a hyperbolic Pohlke’s projection for OP1, OP2, OP3 .



r. manfrin 31

Conclusion of the proof. We can now prove that under the assumptions (5.1) the are infinite,
distinct hyperbolic Pohlke’s projections (conics) if |OP2| = |OP3|, none if |OP2| ̸= |OP3|.
To this end, we resort to the circular case as in the proof of Thm. 1.7. Namely, since we assume
OP1 ∦ OP2 , we may consider the affine transformation Φ : ω → ω defined in (4.13). In this case
we have Φ(Pi) = Ni , for 1 ≤ i ≤ 3, with

ON1 ⊥ ON2 , |ON1| = |ON2| = 1 and ON2 ∥ ON3 . (5.4)

We note also that Claim 4.1 continues to hold even though we apply Def. 1.9 instead of Def. 1.6.
So we still have that C is a hyperbolic Pohlke’s conic for OP1, OP2, OP3 if and only if Φ(C) is
a hyperbolic Pohlke’s conic for ON1, ON2, ON3 .

25

Now, having ON2 ∥ ON3 , by Lem. 3.4 there are infinite, distinct hyperbolic Pohlke’s projec-
tions for ON1, ON2, ON3 if |ON3| = 1, none if |ON3| ̸= 1. By the equivalence (1) ⇔ (2) proved
above, it follows that there are infinite, distinct hyperbolic Pohlke’s conics for ON1, ON2, ON3

if |ON3| = 1, none if |ON3| ̸= 1. Since

|ON3| = 1 ⇔ |OP3| = |OP2|, (5.5)

we deduce that, under assumption (5.1), there are infinite, distinct hyperbolic Pohlke’s conics
for OP1, OP2, OP3 if |OP3| = |OP2|, none if |OP3| ̸= |OP2|. Finally, again by the equivalence
(1) ⇔ (2), the same holds for the hyperbolic Pohlke’s projections.

A Appendix

In Def. 1.4 it may seem more natural to require the condition

OQ1 ∥ TH (Q2), OQ2 ∥ TH (Q3) and OQ3 ∥ TH (Q1), (A.1)

rather than (1.14). But, if we replace condition (1.14) with (A.1), then Def. 1.4 does not work.
Indeed, even in the circular case (i.e., when OP1, OP2 satisfy (3.3)), there does not exist a
projection Πv : R3 → ω satisfying (1.13) and (A.1).

To see this, suppose there is such a kind of projection Πv : R3 → ω . As in Section 3.1, we
note that ρ = 1, because EP1,P2 is a circle with center O and radius r = 1. That is

H =
{
(x, y, z) ∈ R3

∣∣x2 + y2 − z2 = 1
}
. (A.2)

Then, since P1, P2 ∈ H , we must have:

P1 = Q1 or Q′
1 and P2 = Q2 or Q′

2 . (A.3)

But in this case both possibilities

1) Q1 = P1 and Q2 = P2 (or, equivalently, Q′
1 = P1 , Q

′
2 = P2)

2) Q1 = P1 and Q2 = P ′
2 (or, equivalently, Q′

1 = P1 , Q2 = P2)

25 It is worth noting that if EP,Q is a degenerate ellipse, then Φ(EP,Q) = EΦ(P ),Φ(Q) .
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lead to contradictions.
In fact, if we set Q1 = P1 and Q2 = P2, applying Cor. 2.26, we find:

OP1 ∥ TH (Q3) and OP2 ∥ TH (Q3) , (A.4)

which, in turn, implies OQ3 ⊥ ω. But this later condition is impossible if Q3 ∈ H . 17

Conversely, if we try to set Q1 = P1 and Q′
2 = P2 (i.e., Q2 = P ′

2), we have

OP1 ∥ TH (P2), OP1 ∥ TH (P ′
2) (A.5)

and, applying Cor. 2.26, also

OP1 ∥ TH (Q3), OP2 ∥ TH (Q′
3). (A.6)

Then, using coordinates axes x, y oriented in space such that (3.11) holds, (A.5) implies that
the vector v = li+mj+ nk satisfies:

i) v ⊥ i if P2 ̸= P ′
2 . In fact, if P2 ̸= P ′

2 then P2P
′
2 ∥ v. But, taking into account (2.60),

condition (A.5) requires
−−−→
P2P

′
2 ⊥ i.

ii) v ⊥ j if P2 = P ′
2 . In fact, we have P2 = P ′

2 ⇔ P2 ∈ πv ⇔ m = 0.

On the other hand, still from (2.60) and from (A.6), we have that Q3 ∈ H ∩ {x = 0} and
Q′

3 ∈ H ∩ {y = 0}. So these points must be of the form

Q3 =

 0
cosh∗α
sinhα

 and Q′
3 =

 cosh∗β
0

sinhβ

, (A.7)

for suitable α, β . But this means that

Q3Q
′
3 ̸⊥ i and Q3Q

′
3 ̸⊥ j , (A.8)

because cosh∗α, cosh∗β ̸= 0, in contradiction with the fact that v ∥ Q3Q
′
3 .

A.1 A more algebraic justification

More generally, we can prove that

ClaimA.1 There does not exist Q1, Q2, Q3 ∈ H (ρ) such that

OQ1 ∥ TH (Q2), OQ2 ∥ TH (Q3), OQ3 ∥ TH (Q1). (A.9)

Proof. In fact, writing Q1 = (x1, y1, z1), Q2 = (x2, y2, z2), Q3 = (x3, y3, z3), by (2.60) we can
reformulate (A.9) in the equivalent form:

x1x2 + y1y2 − z1z2 = 0

x2x3 + y2y3 − z2z3 = 0

x1x3 + y1y3 − z1z3 = 0

(A.10)
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Then, assuming Q1, Q2 ∈ H (ρ) are such that OQ1 ∥ TH (Q2) (i.e., the first equation of (A.10)
holds), we can show that there does not exist Q3 ∈ H (ρ) such that OQ2 ∥ TH (Q3) and
OQ3 ∥ TH (Q1) (i.e., the last two equations of (A.10) hold).

By contradiction let us suppose that such a point Q3 exists. Noting that OQ1 ∦ OQ2 (see
Rem. 2.28), from the last two equations of (A.10), we deduce that:

x3 = λ

∣∣∣∣ y1 −z1
y2 −z2

∣∣∣∣ , y3 = −λ

∣∣∣∣ x1 −z1
x2 −z2

∣∣∣∣ , z3 = λ

∣∣∣∣ x1 y1
x2 y2

∣∣∣∣ , (A.11)

for a suitable λ ̸= 0. To proceed, it is not restrictive to assume that the coordinate axes are
chosen such that Q1 = (x1, 0, z1), that is,

y1 = 0. (A.12)

Hence (A.11) and (A.12) give

x3 = λz1y2 , y3 = λ
(
x1z2 − z1x2

)
, z3 = λx1y2 (A.13)

and then
x23 + y23 − z23 = λ2

[
z21 y

2
2 +

(
x1z2 − z1x2

)2 − x21y
2
2

]
. (A.14)

Now, we observe that (
z21 − x21

)
y22 = −ρ2y22 because x21 − z21 = ρ2 . (A.15)

So, if x2 = z2 = 0, from (A.14) and (A.15) we immediately obtain

x23 + y23 − z23 = −λ2ρ2y22 = −λ2ρ4 < 0. 26 (A.16)

Since we must have x23 + y23 − z23 = ρ2, the inequality (A.16) gives a contradiction. Conversely,
let us suppose (x2, z2) ̸= (0, 0). With y1 = 0 the first equation of (A.10) reads∣∣∣∣ x1 z1

z2 x2

∣∣∣∣ = 0. (A.17)

Having assumed (x2, z2) ̸= (0, 0), we can deduce that

x1 = µz2 , z1 = µx2 for a suitable µ ̸= 0. (A.18)

This means that (
x1z2 − z1x2

)2
= µ2

(
z22 − x22

)2
. (A.19)

On the other hand, since x21 − z21 = ρ2, from (A.18) we also have

µ2(z22 − x22) = ρ2 . (A.20)

Taking into account (A.19), we therefore find(
x1z2 − z1x2

)2
= ρ2

(
z22 − x22

)
= ρ2

(
y22 − ρ2

)
, (A.21)

because x22 + y22 − z22 = ρ2 . Finally, from (A.14), (A.15) and (A.21), we obtain

x23 + y23 − z23 = λ2
[
− ρ2y22 + ρ2

(
y22 − ρ2

)]
= −λ2ρ4 < 0, (A.22)

which gives the same contradiction of (A.16). 2

26 Note that x2 = z2 = 0 ⇒ y2
2 = ρ2.
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