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ABSTRACT; The arch is a very common masonry structure that has been studied 
extensively in the past. Despite this, no analytical methods exist that can adequately 
evaluate the collapse mechanisms and their related loads. This paper presents a 
collapse approach that takes into account the small tensile and shear strengths of 
masonry material according to a no-tension constitutive model. Some appropriate 
analytical functions are proposed that can reproduce the collapse mechanisms and 
the values of the associated horizontal limit thrusts at the arch's skewback. This 
approach also provides the minimum value for the thickness-span ratio, the safety 
margin, and the maximum value of uniformly distributed vertical loads (load pa- 
rameter). The collapse mechanisms' shapes and the horizontal limit thrusts are then 
analyzed as a function of the loads and the arch's geometry. In addition, the findings 
are compared to the results of a finite-element analysis. 

INTRODUCTION 

The structural behavior of the masonry arch has been studied at length 
since the end of 17th century. However ,  no conclusive results have been 
achieved. 

The first important masonry arch studies were performed by applying the 
technique of the funicular polygon (Hooke 1675; Poleni 1748). Unfortu-  
nately, this technique was too complicated for common applications. There- 
fore the main developments regarding the collapse approach have almost 
always dealt with the arch mechanisms (de La Hire 1695, 1712; Coupelet  
1729, 1730; Frezier 1739; Coulomb 1773; Mascheroni 1785) rather than the 
funicular polygon (Ware 1809; Fuller 1875). However,  conclusive results 
were not reached even by these studies. 

Further developments (Benvenuto 1981) dealt with the line of thrust as 
a function of the thrust. Unfortunately,  in so doing only rough approxi- 
mations were obtained (Mery 1840). 

The masonry arch has also been analyzed according to the new theory 
of elasticity (Lame and Clapeyron 1823; Navier 1833; Castigliano 1879). 
Nevertheless, the elastic approach,  contrary to experience, assumed that 
masonry material was able to support high levels of tensile stress. 

In the last years, the masonry arch has been studied by Heyman (1966, 
1969, 1980, 1982), according to the collapse approach. Nevertheless, the 
collapse approach remains inconclusive because no analytical expression for 
the collapse mechanisms and limit values of  a masonry arch has been pub- 
lished. 

Recently masonry structures have been analyzed with the finite-element 
method, according to "small-strength-material analysis" (Chiostrini et al. 
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1989). Nevertheless, such an analysis presents a large number of free pa- 
rameters, that quite frequently need to be calibrated with reference to 
analytical results. 

STRUCTURAL BEHAVIOR OF ARCHES, DOMES, AND VAULTS IN 
MASONRY BUILDINGS 

Normally masonry arches are used in masonry buildings. Moreover, often 
these buildings have domes and vaults (i.e., barrel, cross, cloister vault, and 
others) as structural elements for floors and roofs. Over time, domes and 
vaults frequently show vertical fractures that cross their entire thickness. 
These fractures are caused by the tensile stresses produced by the two- 
dimensional structural behavior, which exceed their tensile resistance. Thus, 
masonry domes and vaults tend to lose their two-dimensional behavior and 
act like arches. An important example ("Structural" 1991) is Brunelleschi's 
dome of St. Maria del Fiore cathedral in Florence, Italy. Hence, many of 
the structures of masonry buildings have to be modeled as masonry arches. 

Analyses developed in the present research program show how spandrel 
fill can be considered and dealt with as a vertical dead load since the hor- 
izontal action produced by it is negligible compared to its weight (Blasi and 
Foraboschi 1989a). This situation occurs when a cast of mortar, mixed with 
spandrel fill, is poured over the extrados of the structure. In fact, this 
procedure cements the spandrel fill causing it to behave like a coherent 
material. Nevertheless, this situation also often occurs when granular fill 
(i.e., incoherent material and no cast of mortar) is used since its contribution 
to the stability of the arch is negligible. It is negligible because the internal 
friction angle is so great that it produces slight horizontal actions (Blasi and 
Foraboschi 1989a, 1989b). Moreover, the horizontal action is applied close 
to the haunch's collapse-hinge (i.e., its contribution in (9) and (23) is neg- 
ligible). 

On the other hand, a mortared fill does not significantly contribute struc- 
turally to the resistance because the fill is weakly connected to the masonry 
preventing the two materials to work together. Therefore, the contribution 
given by the mortared fill to the structural resistance, and the contribution 
given by the horizontal thrust produced by unmortared, as well as mortared 
fill, to the structural loading can be neglected without loss in accuracy in 
safe conditions. 

Since the arch is a thrusting structure, its horizontal thrust at the skewback 
must be calculated to check whether the abutments or the tie beam are able 
to support this thrust. Yet, the knowledge of the actual thrust transmitted 
by the skewback involves the calculation of the structural behavior of both 
arch and abutments. Since the above calculation is too complex, the easiest 
and most effective method is to refer to the thrust value that causes the 
arch's collapse. If the abutments or the tie beam can support this thrust 
with negligible horizontal displacement compared to the arch's dimensions, 
the thrusting function of the arch is ensured. 

In the process of rehabilitating and/or upgrading a masonry arch with a 
tie-beam, the range of the admissible tensioning values for the tie beam ' 
must be known, so that it can be tensioned or retcnsioned corrected. 

Analytical expressions that provide the collapse mechanisms of masonry 
arches and their associated limit loads must be preestablished in order to 
attain the stated objectives. 
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NO-TENSION ELASTIC CONSTITUTIVE MODEL FOR MASONRY 
MATERIAL 

Service loads usually produce in masonry  structures more  tensile, less 
compressive, and less shear stresses than masonry material  can support .  
Thus, masonry material  can be considered as linear-elastic for compressions 
and as having no-strength for tensions (Villaggio 1981; Blasi and Foraboschi 
1989a). 

The suggested constitutive model  for the collapse analysis is based on the 
following assumptions: 

�9 Tensile stresses are not allowed. Consequently the principal values 
of the stress tensor [o-] are not positive. This condition is referred 
to as: 

O "max ~ 0 (1) 

where o-max = maximum principal stress of [o-]. 
�9 The strain tensor [e] is given by the sum of an elastic part  [ee] and 

an inelastic part  [so]; the inelastic part  is produced by the material  
cracking 

[al = [tel + [~ ]  (2) 

�9 The cracking strains ~ produce only dilatations of the material  at 
any direction. This s tatement  implies that the minimum principal 
strain ~ "  of the cracking strain tensor [~e] is always not negative 

~Ti, _> 0 (3) 

�9 The normality condition 

[~]'[ec] = 0 (4) 

is then assumed (thus the principal directions of [o-] and [e~] are the 
same). Eq. (4) ensures that dilatations for cracking can occur only 
in the direction for which ~ = 0, and, on the other hand,  if o- 4: 
0 no dilatation for crack can occur. The  normality conditions ensure 
also that cracking shearing strains can not occur, which would be 
without physical sense. 

�9 The material  behavior  for compressions is assumed to be linear- 
elastic 

[~1 = [Cl-[o-] + [~J (5) 

where the [C] matrix is the elastic-deformability tensor. 

The assumed model  therefore implies that the stress tensor is a single- 
valued function of the strain tensor, that is, [o-] = [o-([~])], since 

[o-] = [ C ] - ' . ( H -  [ ~ ] ) ~  [o-] : [D ] . [% ]  (6) 

Moreover,  it implies that the maximum principal stress ~ x  of lee] is non- 
positive, that is, lee] cannot produce any dilatations. 

MECHANICAL HYPOTHESES OF MASONRY ARCH 

To deal with the collapse of masonry  arches, a one-dimensional behavior  
was assumed, that is, stresses and strains were assumed to exist in the 
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transversal sections only. This assumption implies that the constitutive model 
reduces in the following expression for the total strain e: 

if ~ < 0  then ~ = ee (Ta) 

if e > 0  then ~ = ~c (7b) 

and in the following stress-strain law: 

cr = K ' E ' e  (8) 

w h e r e K - -  0 f o r e  > 0 ,  a n d K  = 1 f o r e - < 0 .  
The one-dimensional behavior hypothesis suggests that the structural state 

of the masonry arch can be represented by the line of thrust. According to 
the adopted no-tension elastic constitutive model, the line of thrust has to 
be inside the thickness of the transversal section of the arch or at least 
tangent to the boundary. Therefore, loadings that imply the line of thrust 
to be outside the arch's thickness cannot be permitted. The tangency con- 
dition of the line of thrust to the boundary of the arch can be represented 
with a hinge (not a plastic hinge since inelastic part of [el is caused by 
cracking). 

Provided that the line of thrust is not outside the arch's thickness, the 
collapse of the arch is reached if a mechanism results once each tangency 
point with a hinge is substituted. Otherwise the loads have to be further 
increased to reach the collapse mechanisms. 

STRUCTURAL ASPECTS OF MASONRY ARCH 

To avoid collapse, an appropriate horizontal thrust should be applied by 
the abutments at the arch's skewback. The admissible range of values for 
the horizontal thrust is unique for each arch and applied load. Hereafter,  
the range is indicated by the lower and upper horizontal thrust limits Hm~n 
and Hmax, which are the minimum and the maximum values of the thrust 
that ensure the arch's equilibrium. A thrust value higher than Hm~ produces 
an "upper collapse mechanism," and a thrust value lower than Hmi, produces 
a "lower collapse mechanism." 

The findings of a special finite-element analysis (see the relevant section) 
support that fact that the uniform loading is the most representative loading 
condition. The circular is the most representative shape for masonry arches, 
as well as domes and vaults, since it is the most common shape, and moreover 
some arches of noncircular shape are replaced, for analysis purposes, with 
equivalent circular arches (as proved by the previously mentioned finite- 
element analysis). Hence, the circular masonry arch with uniform loading, 
in addition to the self weight, was considered. 

Hmi,, AND LOWER COLLAPSE MECHANISM FOR 
SEMICIRCULAR ARCH 

A masonry arch with semicircular intrados and extrados is considered, 
that is, an arch with constant thickness s. The arch is loaded by its own 
weight and by a uniformly distributed load q. Referring to Fig. 1, a hinge 
is set in the intrados in a generic position D (i.e., one hinge for each haunch, 
thus two hinges) and another hinge is set in the crown section to obtain a 
collapse mechanism. Then, a roller (that is a hinge permitting the horizontal 
displacement) is set in the skewback section (i.e., one roller for each skew- 
back, thus two rollers). The horizontal thrust H transferred between arch 
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and abutment is applied at the roller, and the vertical reaction is transferred 
by the roller. The position of the roller in the skewback section does not 
influence the calculation of the lower collapse mechanism. The position of 
the hinge in D is defined by the angle O, which is considered a variable. 

Due to both the symmetry and the horizontal-displacement-equilibrium 
conditions, the internal force at the AB section is equal in modulus and 
opposite in direction to the horizontal thrust applied by the abutment at 
the skewback section. The examination of the rotational equilibrium of the 
ABCD block around D shows that the internal action at the AB section 
has to be applied in B in order to obtain the minimum of H. In so doing, 
the hinge in the crown section is set in B (i.e., at the extrados). 

The rotational equilibrium equation about D follows, where Hh is the 
internal force applied in B 

Hb.[ (R  + 2) - r .s in(O)]  = P~,.d, + Q,,.d 2 (9) 

The expressions providing P,,, d~, Q,,, and d 2 in (9) are obtained in the 
following. 

The weight P of the half arch with thickness t = 1 is given by 

"iT 
e = - ~ . w . R . s  (lo) 

Therefore the weight P,, of ABCD is 

Using the static moment calculated with respect to the arch's symmetry axis, 
the arm dl of P~, is given by 
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fl /2 s ' R  2" w" cos(O) = Pv" [r-cos(O) - dl] (12) d~) 

Substituting (11) in (12) yields: 

s ' R 2 " w ' c o s ( ~ ) )  dO = rr Jo - ~ ' w ' R ' s "  1 - 2. -[r-cos(O) - dl] (13) 

Then, dl can be obtained from (13) 

2 - R - [ I  - sin(O)] 
dl = r-cos(O) - ~r.(1 - 2-O/7r) (14) 

The resultant Qv of the part of q applied on BC is given by 

where L indicates span. The arm d2 of Qv is given by the following rela- 
tionship: 

L + s  
d2 = r-cos(O) 4 cos(O) (16) 

Substituting (11), (14), (15), and (16), in (9) and replacing the radius with 
the span according to R = L/2 and r = (L  - s)/2, Hb is given by 

Hb = - ~ ' L ' s ' w  1 - 2 �9 "cos(O) -- - sin(O) 
1 20/~  J 

+ q - - - ~ -  cos(O). �9 cos(O) 4 

, s  ] 
- - - ~ "  sin(O) (17) 

Eq. (17) yields Hb as a function of O [with O in the range of values (0 - 
~t/2)l, that is in relation to the position of the hinge D in the haunch. This 
relation is plotted in Fig. 2 for different spans and prefixed values of s, q, 
and w. Since only one O value of the range for each curve is correct, the 
others represent unrealistic collapse mechanisms. 

The correct O value is unknown. Therefore, the lower collapse mechanism 
has to be calculated first, so as to evaluate O. Then, the lower horizontal 
limit thrust can be calculated from (17). 

It can be noted that the line of thrust passes through D. If D were in the 
crown section (in the intrados), that is, if the value of the angle O of the 
hinge in the haunch were ~/2 ~ 1,571, the line of thrust would be vertical 
(since it has to pass through B and D, that are on a vertical line), thus 
intersecting the arch's intrados. To maintain the equilibrium of ABCD, 
tensile stresses are necessary in the radial sections where the line of thrust 
is outside the thickness. Nevertheless, according to the hypotheses, tensile 
stresses in the radial sections are not permitted. Therefore, the last hinge 
cannot be in the crown section, and O has to be decreased (i.e., O < 7/2). 

As the O value decreases from -rr/2, Hb increases starting from 0, and 
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FIG. 2. Relationship between Hb and Angle (9 of Hinge in Haunch (q = 0; w = 
18,000 N/m3; s = 0,90 m) 

consequently the horizontal component of the line of thrust also increases, 
changing its orientation but not the sign of its curvature (i.e., the line of 
thrust remains convex). In so doing, starting from 19 = O, a second inter- 
section between the line of thrust and the intrados results (the second in- 
tersection occurs at the skewback section). For O = 0 and (9 = 0, (17) 
yields the same value of Hb. As 19 continues to decrease, these two inter- 
sections get closer (since (17) provides the same value of lib for the values 
of O in correspondence with the two intersections), until the parabolic line 
of thrust is tangent to the intrados, (see Fig. 2). At the same time, the value 
of Hb increases as the two intersections tend to coincide; the tangency 
condition corresponds to the maximum value of Hb that can be obtained 
from (17). Furthermore, this condition also corresponds to the minimum 
value of the thrust allowed by the previously mentioned hypothesis (i.e., 
without tensile stresses in the radial sections) that permits the arch's equi- 
librium. 

Considering (17) as a function of 0 in the form 

Hb = y (o )  (18) 

with L, s, w, and q as parameters, the value of O that produces the maximum 
of the function f(O),  hereafter indicated by Oa, is the angle of the hinge in 
the haunch of the lower mechanism. The corresponding Hb, namely, Hb = 
f(Oa), is the lower thrust Hmin. 

To obtain this value, the derivative of (17), expressed in the form of (18), 
has to be calculated with respect to | Since the final expression is quite 
complex, it is broken down into easier sections using the following compact 
symbols: 

F = L.sin(| ct = L.cos(O); J = cos2(O); E = sin(| 
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I~ = s ' s i n ( O ) ;  f~ = s-cos(O); 5 = L/2; Q = q/2; Z = 1 - 2.O/7r 
(19) 

The following partial expressions are also obtained: 

F =  8 + Q; G = F/2; X =  ( L ' Q  + s . Q ) . ( L . J / 4 -  (3 . s . J /4 )  

�9 { ~ / [ 2 - ( F -  G + /x/2)z]} - f~/[2(5 + s/2 - G + i~)z]) (20) 

The derivative of f with respect to O, indicated by H~(| is expressed by 
the following final equation: 

H~(| = {Z . ( s  + w/4 + ~r'L)'{ed('rr - 2 . |  - G + tx/2 - 2 - L  

/[~,2(1 - 2 " 0 / = )  2] + 2-F/(rr2"Z2)} + [ - 2 " L  - 2"s/= 

- w/(2.~r)].{ed2 - ~ /2  + [ - L / ~ r  + ( r / w ) / z ]  

+ ( - a . E  + 3 . 1 2 . E ) . ( L . q / 2  + s . Q ) } / ( F  - G + 1~/2) 

+ Z .  (s + w/4 + ~r .L) . [a /2  - ~ /2  + ( - L / ~ r  + r/~r)/Z]} + X 
(21) 

Eq. (21) is plotted in Fig. 3 using prefixed values of the parameters  L,  s, 
w, and q. As in Fig. 2, only one point represents a realistic collapse mech- 
anism. 

To obtain the maximum of (18), and hence the lower mechanism, (21) 
has to be equal to 0 

H~(O) = 0 (22) 

The solution of (22) yields the value Od of the angle (9 of  the hinge in the 
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haunch. Then, substituting the 0 d value into (17), the lower thrust is ob- 
tained. 

//max AND UPPER COLLAPSE MECHANISM FOR 
SEMI-CIRCULAR ARCH 

The same arch and loads as in the case of the lower mechanism are 
considered. Referring to Fig. 4, a hinge is set at the arch's intrados in a 
generic position D to obtain the upper collapse mechanism. For symmetry, 
another equivalent hinge is set at the other haunch. Then, two rollers are 
set symmetrically at the skewback, with applied horizontal thrust H trans- 
ferred between arch and abutment. The position of the hinge in D is defined 
by the angle O, which is considered a variable. 

The reaction given by the abutment at the AB section (i.e., the skewback 
section) corresponds to the horizontal thrust H plus a vertical force V. The 
rotational equilibrium around D shows that the maximum value of H is 
obtained when the reaction V is applied in B (i.e., the roller of the skewback 
section is set at the extrados). The rotational equilibrium is given by the 
following equation, where Hb indicates the horizontal thrust applied at point 
B of the AB section and Po the weight of ABCD: 

The expressions providing V, Pv, dl, Q~, and d2 in (23) are then obtained. 
The reaction V is given by the following expression: 

V = P + q.  = - ~ . R . s . w  + q .  

- "~" " s ' w  + q" (24) 

qV ~ "-I 

I / 1 " - -  

Hb Pv 
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The weight Pv of ABCD is given by 

Pv = -~ 'R ' s 'w"  = -~ . s .w .O (25) 

The static moment with respect to the arch's axis of symmetry is used to 
determine the a r m  d I Of the force Pv, yielding the following expression: 

f ~  s .R2 .w.cos(O)  = R . s .w .O . [ r . cos (O)  + dl] (26) d(~ 

Eq. (26) yields: 

dl = R.sin(O) r.cos(O) = L sin(O) L - S.cos(O) (27) 
O 2 O 2 

The length of the projection of BC on the horizontal plane is given by 
the following expression: 

B---C - L + s.[1 - cos(O)] (28) 
2 

The resultant Qv of the portion of q applied to BC is given by: 

L + s  _ 
Q~ = q . - - ~ ' l  1 - cos(e)] (29) 

The arm d2 of the resultant Qv is: 

d2 L + 
- 4 ~ s . [ 1  - cos(O)] + s.cos(O) (30) 

Substituting (24), (25), (27), (29), and (30) into (23) and replacing R and 
r with the span L, Hb is expressed by: 

lib = . L . s . w  + q 2 ~- .cos(O 

L 2 L L - s  ] 
- -~-.s.w.sin(O) + 2 2 s .w.O-cos(O)  

�9 sin(O) - 2 . q - ~ - - ~ . [ 1  - cos(O)] + q 

Eq. (31) is plotted in Fig. 5 and yields Bib in relation to O, or, in other 
words, in relation to the unknown position of the hinge D in the haunch. 
To obtain the upper horizontal limit thrust from (31), the value of O cor- 
responding to the upper mechanism must be evaluated. Structural consid- 
erations similar to those developed for the lower thrust show how the value 
of the upper thrust is the minimum value of Hb with respect to O. Expressing 
(31) as a function of O yields: 
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Hb = f(O) (32) 

with L, S, w, and q as parameters. The | value that produces the minimum 
of the function f(O),  indicated by 06, is the angle of the hinge in the haunch 
of the upper mechanism, and the associated H b value is the upper thrust 
Onaax 

Again, to calculate the minimum, the derivative of (32) with respect to 
0 has to be evaluated�9 If the compact symbols in (19) are used, the following 
partial expressions can be obtained: 

U =  M . L . |  Y =  M . s ;  B = G -  ix/2; M = L . s . w ;  qb = 4-s (33) 

The derivative of Hb = f( |  with respect to (9, which is still indicated with 
H~(O), is expressed by the following final equation: 

H~,(O) = {-ot/(Z�9 2) -t- f~/[Z(G - s ' E ) Z l � 9 1 4 9 1 7 4  - q 

�9 (1 - 9t/s)2F2/2 + (F - a/2) + f~/2]" (~r" Q/4 + L" Q + s ' Q )  

+ U'f~/gp - 2 . M . L , E }  + [ Y ' |  - Y . f l / +  + 2 . q .  F2.~2-E/2 

- 2 " q - F  2" E + B(~T, m / 4  + L" Q + s" Q)  - U .  El2  - 3" Y" f~/(~]/B 

(34) 

Eq. (34) is plotted in Fig. 6. To obtain the maximum of (31), and hence 
the upper mechanism, (34) has to be set to 0: 

/ / ; ( e )  = 0 (35) 

The upper thrust is obtained by substituting the (9 value given by (35), that 
is, (ga. Hence, (34) and (31) are the analytical expressions that provide the 
upper collapse mechanism and thrust. 
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CRUSHING STRENGTH OF MASONRY MATERIAL: INFLUENCES ON 
THRUSTS AND MECHANISMS 

According to the proposed collapse approach, the stress level reached by 
each collapse mechanism is theoretically infinite in correspondence with the 
hinges. Thus the limit thrusts as well as the mechanisms are only theoretical. 
A corrective term is then introduced into the analytical functions in order 
to give the possibility of taking into account the actual masonry crushing 
strength. Thus, (8) is replaced with 

= kp'E-~ (36) 

where k e = 0 for e -> 0; kp = 1 for eo < e < 0; and kp = ~Lim/E'e for e 
--< eo, and where O'Li m = crushing strength; and eo = yielding strain. 

The axial force N, that is, the component  of the line of thrust normal to 
the cross section, was considered. The distance of the line of  thrust with 
respect to both arch's intrados and extrados must be greater than the fol- 
lowing 13 value to ensure admissible compressive stresses: 

N N 
= - , (with t = 1) (37) 

f3 2. t" (~Lim 2 "  O'Li m 

To obtain the maximum distance (i.e., the maximum value of  13), the max- 
imum value of N among all the values in correspondence with the hinges 
has to be set in (37). 

In the case of the lower mechanism, the rollers at the skewback are active 
when the mechanism is completed (i.e., when the rollers at the skewback 
work the mechanism is already occurred); thus, the stress level reached at 
the skewback is not influent. The value of N in correspondence with the 
hinge in the haunch, hereafter indicated by Nh, is greater than the value of  
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N in correspondence with the hinge in the crown. Hence, Nh is the value 
to set in (37). 

In the case of the upper mechanism, Nh is greater than the value of N in 
correspondence with the hinge in the skewback section; hence, Nh is still 
the value to set in (37). 

Availing of the tangency condition, the value of Nh can be expressed by 

Nh = "L.s . t 'w  + q" - -~ .s ' t .w.O 

L + s -  }z ] 
- q ' ~ ' [ 1  - cos(O)] + H 2 (38) 

where H indicates either Hmi, or Hm .... according to the collapse mechanism 
that is considered. 

Substituting (38) into (37), the distance 13 is found. The following expres- 
sion can then be written: 

N ~ S '  s -  / [ { 4 . L . s . t . w + q . ( L - - ~ f  s ) 
S '  - -  s - -  13 = S 2 . t . O . L i  m 

- L ' s ' t ' w ' O  - q ' - - - - ~ ' [ 1  - cos(O)l + (2"t'O'Lim) (39) 
2 

where S' indicates the reduced thickness. When S' replaces s in (17), (21), 
(31), and (34), the maximum stress level in the arch does not exceed ~Lim- 

TO use (39), O and H (i.e., either H m i "  o r  Hmax) have to be determined 
beforehand. Thus, (39) is an iterative formula. 

Frequently, the above thickness's reduction is so slight that it can either 
be neglected or the value yielded by (39) without iterating can be used, 
especially in the case of the lower mechanism. 

For example, the 13 value for the arch with L = 14 m, s = 0.90 m, t = 
0.50 m, q = 0, w = 18,000 N/m 3, and cri_~m = 3 N/mm 2 in the lower collapse 
mechanism condition (i.e., O = 0.582, H = H m l  n = 66,281 N) at the first 
iteration is 0.029 m. This value implies that S'/s = 96.7%. Thus, only a 
slight reduction turns out, even in correspondence with a nonhigh masonry 
crushing strength (if no mortar joint is close to O = 0.582, the voussoirs' 
crLi m can be considered). 

H,~j. AND/-/max AND LOWER AND UPPER COLLAPSE MECHANISM 
FOR CIRCULAR MASONRY ARCH 

Eqs. (17), (21), (31), and (34) apply only to semicircular masonry arches, 
that is, to arches where the angle Oa formed by each of the two extreme 
cross sections to the horizontal is equal to 0 ~ Nevertheless, the methodology 
was extended so as to include all types of circular arches, that is, arches of 
0 -- O~ < 90 ~ 

To update the theory on the lower mechanism and thrust, O. has to be 
considered, and the O value yielded by (21) and (22), namely, O~, has to 
be compared with Oa. If O. -> Oa, O. is correct, and the thrust can be 
calculated with (17) by using Oa. If instead Oa < Oa, then Oa is not correct. 
In this case, the angle of the unknown hinge in the haunch is O = O., and 
the thrust is that given by (17), provided that O. replaces O. (in this case 
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(21) and (22) are not used). This is supported by the fact that the part of 
the line of thrust to which the collapse mechanism depends on is that from 
the crown up to the hinge in the haunch. 

When O, -> 30 ~ the thrust can be calculated by using the only equation 
(17) in correspondence with O = | without excessive loss in accuracy. 

To update the theory on the upper mechanism and thrust, (31) and 
(34) have to be modified, since the part of the line of thrust on which the 
collapse mechanism depends is that from the skewback up to the hinge in 
the haunch. 

Nevertheless, the upper mechanism is not significant for arches of 30 ~ 
< Oa, since quite frequently it is preceded by the crushing collapse. There- 
fore, when tensioning a tie beam in arches of | > 30 ~ the crushing strength 
limit has to be referred to rather than the upper collapse mechanism. 

MINIMUM VALUE FOR THICKNESS-SPAN RATIO 

Eqs. (17) and (31) show that, when the thickness-span ratio decreases 
and the uniform load does not change, the lower thrust increases while the 
upper thrust decreases; the opposite occurs when the thickness-span ratio 
increases. Therefore, as the thickness-span ratio decreases, the lower thrust 
eventually equals the upper thrust. The corresponding ratio value is the 
minimum allowable thickness-span ratio for a given uniformly distributed 
load. In fact, for lower values than the minimum, every thrust that prevents 
the lower mechanism from occurring would provoke the upper mechanism, 
and the opposite is true as well. 

When the thickness-span ratio is less than the above minimum, the arch 
collapses, according to the hypotheses, whereas it can sustain itself in prac- 
tice only availing of the slight masonry tensile strength. 

When the minimum thickness-span ratio is used, the actual value of the 
horizontal thrust transferred between the arch and the abutments through 
the skewback section is equal to the value of the lower and upper thrusts, 
which are equal to each other. In this case, both lower and upper mechanisms 
are present at the same time; hence, the arch can be described as being 
composed of four parts joined by three hinges plus two hinges at the skew- 
back sections. Thus, the structure is statically determined, since both the 
actual horizontal thrust and the vertical reaction are known; therefore, the 
actual internal action is easily calculated. 

The minimum thickness-span ratio can also be obtained using (21) and 
(34). In this case, a new equation is posed by requiring the hinge in the 
haunch of the lower and upper mechanisms to have the same position, (i.e., 
to have the same value of | Solving this equation provides the minimum 
thickness-span ratio 

H~(lowermechanism) = Hi  (upper mechanism) ~ f ( L / s )  = O ~ L / s  
(40) 

where f(L/s) = resulting function of the thickness-span ratio. 
When the lower mechanism takes place, the skewbacks get closer, that 

is, the rollers at the skewback sections get closer, whereas the opposite 
occurs in the case of the upper mechanism. In correspondence with the 
minimum thickness-span ratio, the distance between the two rollers can not 
change, that is, the rollers behave like hinges, since both the lower and 
upper mechanisms are present at the same time. Therefore the minimum 
thickness-span ratio consists of a pure rotating mechanism. 
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FIG. 7. Hb(O) for Minimum Thickness-Span Ratio (q = 0; w = 18,000 N/m3; s = 
0.90 m; L = 17 m) 

An example is shown in Fig. 7. A masonry arch with a 17-m span is 
considered. Following the above procedure, a 0.90-m value for the minimum 
thickness is obtained. The point where the two curves are tangent provides 
both the value of the unique horizontal thrust and the position of the hinge 
in the haunch. 

SAFETY MARGIN  O F  M A S O N R Y  A R C H  

To assess the safety margin of a masonry arch, the difference between 
H i .  and Hma x must be calculated, together with the actual value of the 
thrust transferred between the abutment (or tie beam) and the arch at the 
skewback. Since the actual value of the thrust depends on an arch's and 
abutments' stiffnesses, it is difficult to evaluate. Nevertheless, the stiffness 
varies due to creep, cracking, and other factors; hence, the actual value of 
the horizontal thrust has a limited application. Therefore, only Hmi n and 
Hma~ should be taken into account, rather than the actual value of the 
horizontal thrust, when the safety margin of a masonry arch is calculated. 

The proposed definition for the safety margin of the masonry arch, here- 
after indicated by cI), is the following: 

0 = /-/max -- Hmin 
(Hma x + Hmin)/2 (41) 

The value of qb in (41), which depends on L, s, w, and q, expresses the 
maximum possible safety resources of the masonry arch under a given load 
q. 

As an example, a masonry arch with a 0.90-m thickness and loaded only 
by its own weight is analyzed by varying its span and calculating the safety 
margin ~ from (41). The values obtained are reported in Table 1. 

Table 1 shows that, when the span increases (i.e., the thickness-span ratio 
decreases), qb decreases. The 17-m span is a limit value, since the corre- 
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TABLE 1. Safety Margin r for Masonry  Arch (s = 0.90 m; q = 0) 

(1) 
8 

(2) 

0.604 

10 

(3) 

0.402 

12 

(4) 

0.256 

13 

(5) 

0.248 

Span (m) 

14 
(6) 

0.138 

15 
(7) 

0.082 

16 

(8) 

0.034 

17 18 
(9) (10)  
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sponding ~ is practically zero, whereas for L = 18 m, �9 is negative, that 
is, the arch cannot sustain itself. 

To illustrate the safety margin more accurately, the behavior of the two 
curves (17) and (31) is reported for two of the arches that have been analyzed 
in the previous example. The case of the 15-m-span arch is shown in Fig. 
8(a), where the safety margin �9 is represented by the minimum distance 
between (17) and (31). The case of the 18-m-span arch is shown in Fig. 
8(b). Since the span limit is about 17 m, the 18-m-span arch cannot support 
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its own weight. This fact is pointed out by the two intersections between 
(17) and (31). 

MAXIMUM ADMISSIBLE VALUE FOR UNIFORMLY 
DISTRIBUTED LOAD 

The fact that both lower and upper thrusts increase when q increases [see 
Figs. 9(a) and (b)] suggests that a limit value for q does not exist unless the 
compression stress level is considered in relation to crushing resistance. 
Furthermore, any value of the thickness-span ratio would be allowed from 
a collapse point of view, provided that an appropriate uniformly distributed 
load q acts on the arch's extrados. Nevertheless, from a collapse point of 
view (i.e., also if crushing strength is neglected), high levels of the loading 
q are meaningless because the horizontal thrust values yielded by q are too 
high. In fact, the abutments (or the tie beam, when present) collapse at a 
much lower value of the horizontal thrust. Therefore, an HLim limit value 
for the horizontal thrust transferred by the skewback section has to be 
considered together with qmax. 

The most appropriate value of HLi m is probably the value that produces 
the collapse of the abutments or the tie beam when present. In fact, provided 
that the actual value of the thrust is within the range of Hmi, to Hm,x, the 
collapse of the arch occurs only when the crushing strength is exceeded. 
Nevertheless, abutments usually collapse before the crushing collapse of the 
arch occurs because the arch's main internal action is the axial force, whereas 
that of the abutments is the bending moment. 

When a tie beam is present, the abutments are prevented from collapsing; 
yet, the tie beam itself collapses before the arch collapses for crushing 
because, especially in old buildings, either the steel or the anchor blocks of 
the tie beams are not strong enough. 

Therefore, qr~ax is defined as the q value corresponding to HLim- Hence, 
when the uniform load exceeds q . . . .  the thrust exceeds HLim, and either 
the abutments or the tie beam collapse. When this occurs, the abutments 
or the tie beam do not supply the necessary horizontal thrust to the arch, 
so the skewback is no longer buttressed. Eventually, the arch collapses 
following a lower collapse mechanism. 

The q .... value is obtained by substituting Hb with nLirn into expression 
(17), provided that the value of O given by (21) and (22) is set 

((IL qm~x = 2 - - - - - - ~ . s i n ( O )  - - ~ . L ' s . w  1 - 2 

cos o) 

�9 [ L  - - -  

L 1 - s i n ( o ) l ] / f L  + s , _ ,  
-_ jl/l--  cos  

L+4 sc~176 H-m 
To obtain qmax, nLim has to be assessed beforehand. 

(42) 

ANALYSIS OF RESULTS 

Results obtained by (17), (21), (31), and (34) for an arch loaded only by 
its own weight (i.e., q = 0) are analyzed. 
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The previous equations yielded a range of 30-35 ~ for O, independent of 
the parameters L, S, and w (Figs. 2 and 3). This result confirms the value 
of O = 30 ~ obtained by experience. 

Therefore, the position of the hinge varies over a small range. And fur- 
thermore, (17) is quite flat in correspondence with its maximum; so for any 
value set within that range or just outside it, (17) always provides a lower 
thrust value that is similar to the one obtained using the actual angle. 

This flat zone indicates that the hinge in the haunch is placed in the 
weakest radial section close to that yielded by (21). When the thickness- 
span ratio increases, the flat zone becomes wider and flatter. 

In the case of the upper mechanism, and with q = 0, the hinge in the 
haunch formed an angle O between 35 ~ and 55 ~ (Figs. 5 and 6). Since (31) 
has a fiat minimum, whatever value of 19 within that range or near it yields 
a value of the upper thrust similar to that obtained using the correct angle. 
Again, the hinge in the haunch is placed in the weakest section close to that 
yielded by (34). For the upper thrust also, the flat zone increases when the 
thickness-span ratio increases. 

If a uniformly distributed load q is applied in the case of the lower 
mechanism, a 30-37 ~ range is obtained for O, as shown in Fig. 9(a). There- 
fore, the 30 ~ value obtained by experience remains valid. The maximum of 
the curve is still flat, so similar considerations to those mentioned can be 
made about the possibility of approximating t9 in (17). 

If a uniformly distributed load is applied, the upper mechanism largely 
depends on the value of q, as shown in Fig. 9(b). High values of q yield a 
range of possible values for the angle 19 of the hinge in the haunch ap- 
proximately equal to 30-35 ~ The 19 range becomes about 25-30 ~ for very 
high values of q. 

Also in this case, the curves yielded by (31) are quite flat around the 
minimum, so the thrust value can be satisfactorily evaluated by using an 
approximate value of 19 in (31), instead of that provided by (34). 

COMPARISON OF FINDINGS WITH FINITE-ELEMENT ANALYSIS 

The analytical method described in the present paper is based on a number 
of assumptions (such as the no-tension constitutive law, and uniform load- 
ings. To prove their adequacy, a comparison with a special finite-element 
analysis was conducted. To this object, the collapse of the masonry arch 
was analyzed with a numerical method for "small strength material analysis" 

TABLE 2. Proposed Method Results Compared to Numerical Results (s = 0.90 
m;q = 0) 

Result source 
(1) 

Proposed method 
Numerical analysis 

Proposed method 
Numerical analysis 

Span (m) 

(2) (4) (5) (7) (8) (9) 

(a) Hmi .  9.714 .  ,4.1,9.9160.4p7,.,1  ., , ,  
29.5 42.1 54.3  60.1 66.5  73 .3  79 .0  85.3 

(b) H~ax 

50"4 I 62"4 I 68'8 I 72"8 I 75"2 78"8182"1185 
50.5 62 .6  69 .2  72 .5  75.5  78 .7  82 .0  85.1 
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(Chiostrini et al. 1989). Only negligible differences turned out between both 
the limit thrusts (see Table 2) and the mechanisms when the actual weight's 
distribution of the fill; its thrusting behavior and its strength; and masonry 
small tensile strength were taken into account. Thus, the fill can be rep- 
resented by a uniform dead load without loss in accuracy. Moreover, no- 
tension constitutive model results are adequate. In addition, in most cases, 
the collapse mechanisms do not depend on the distribution of the incidental 
loads, provided that the loading is symmetrical. In fact, the amount of the 
incidental loads usually is small compared to that of the dead loads (the self 
weight of both the masonry arch and the supported structures, as well as 
the spandrel fill). 

Referring to previous finite-element studies (Blasi and Foraboschi 1989a, 
1989b), if arches of noncircular shape (however, with shape not much dif- 
ferent from the circular one) are replaced with an equivalent circular arch, 
that is, with the constant-thickness circular arch that best fits the given shape, 
negligible errors are produced in the collapse analysis. 

CONCLUSIONS 

When masonry buildings are investigated, it is of great significance to 
evaluate the collapse situations, since evaluating stresses and strains pro- 
duced by loads is a hard task. In fact, masonry structures are cracked by 
service loads, retaining an inelastic behavior for their entire existence; thus, 
an elastic approach is unrealistic, whereas a collapse approach can be more 
appropriate. 

To perform nonlinear stress-strain analyses, special finite elements can 
be used that are capable of reproducing masonry mechanical behavior. 
Nevertheless, problems arise in the case of arches since the boundary con- 
ditions must be assessed taking into account the actual behavior of the 
abutments and all the structures connected to them. Therefore, a collapse 
approach provides more reliable results in the case of boundary conditions 
too complex and uncertain to be reliably modeled. 

Moreover, a finite-element model capable of reproducing masonry-ma- 
terial mechanical properties quite frequently needs the calibration of its free 
parameters and the verification of its results. To this object also, analytical 
results provided by a collapse approach can be used since they can be 
compared with the corresponding results provided by the finite-element 
model. 

The actual value of the thrust, and therefore of the arch's structural state, 
depend on the boundary conditions, in particular on the stiffness of the 
abutments, which varies due to cracking, creep, and other factors throughout 
the years. Thus, the limit situations can better represent the arch's structural 
state, as well as its safety margin, especially when the mechanisms do not 
differ too much. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

[C] = elastic-deformability tensor; 
[D] = [C] - t ;  

d~ = arm of Pv with respect to D; 
d2 = arm of Q,, with respect to D; 
E = masonry modulus of elasticity; 
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= horizontal  thrust  appl ied  at point  B of  the section A B ;  
= maximum thrust value that  does not  produce  collapse of 

abutments  or  tie beam;  
= upper  horizontal  limit thrust appl ied  at skewback;  
= lower horizontal  l imit thrust appl ied at skewback;  
= lower and upper  hor izonta l  limit thrust obta ined  according 

to special f in i te-e lement  analysis; 
= horizontal  thrust  when hinge in haunch forms an angle 0 ;  
= derivative of  HB(@) with respect  to (9; 
= adimensional  coefficient depending on e; 
= adimensional  coefficient depending on e; 
= arch's  span ---- 2 . R  
= component  of  line of  thrust normal  to the cross section 

(i .e . ,  axial force in arch); 
= axial force N in haunch cross section with hinge; 
= weight of half arch; 
= weight of  A B C D  block; 
= resultant  of par t  of  q appl ied  on BC; 
= uniformly dis t r ibuted load appl ied at extrados  of arch; 
= maximum admissible value of uniform load 
= radius --= (L/2);  
= internal  radius --- (R - s/2); 
= reduced thickness; 
= thickness of arch (constant) ;  
= depth of  arch assumed as 1 (i .e. ,  uni tary depth) ;  
= vertical react ion at skewback provided  by abutments ;  
= specific weight of masonry  (force/length3); 
= distance of  N with respect  to in t rados  or  extrados;  
= strain (•e "}- e c ) ;  

= strain tensor;  
= cracking strain; 
= inelastic par t  of [el p roduced  by mater ia l  cracking; 
= elastic strain; 
= elastic par t  of  [el; 
= masonry yielding strain; 
= maximum principal  stress of  [ee] 
= minimum principal  strain of  [ec]; 
= angle of  hinge in haunch to horizontal  (in radians);  
= angle formed by each of two ext reme cross sections to the 

horizontal  (in radians);  
= | value provided  by H i ( |  = 0; 
= O value for which line of  thrust passes through intrados 

of skewback;  
= stress tensor;  
= masonry crushing strength; 
= maximum principal  stress of  [~]; and 
= safety margin of  masonry  arch under  given load. 
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