Esame di MQAT - Statistica del 20-01-2010

Nome / eMail :

1) Calcolare la mediana e l'indice di Gini relativo nella seguente tabella di frequenze

$$\begin{pmatrix} j & x_j \dashv x_{j+1} & n_j \\ 1 & 0 \dashv 10 & 30 \\ 2 & 10 \dashv 25 & 5 \\ 3 & 25 \dashv 50 & 15 \end{pmatrix}$$

2) Costruire LA matrice di frequenze sotto condizioni di INdipendenza ed UNA matrice di frequenze sotto condizioni di perfetta dipendenza, della seguente tabella 3x3 di frequenze congiunte reali

$$\begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 0 \\ 0 & 5 & 6 \end{pmatrix}$$

- 3) Si consideri una variabile X di tipo binomiale, con parametri $\pi=0.4$ ed n=15. Si chiede di disegnare il grafico della funzione e di calcolare la probabilita' condizionata $P(x \le 4 \mid x \le 7)$
- 4) Date due variabili (x, y) indipendenti e standardizzate $(\mu = 0, \sigma = 1)$ e la statistica z = (1 + 2x y/3), calcolare la media e la varianza di z.
- 5) Due campioni indipendenti di uguale numerosita' n=12, hanno prodotto le seguenti statistiche: $\bar{x}=+1$, $\bar{y}=-2$, $S_x^2=6$, $S_y^2=9$. Costruire un intervallo di confidenza per la differenza delle medie e verificare l'ipotesi di omogeneita' in media. A parita' di condizioni, determinare il valore di n per cui la decisione e' in "bilico" (il valore ipotizzato "cade" sull'estremo dell'intervallo).
- 6) Dato il modello lineare $Y_i = 1 0.5 X_i + e_i$, con n=10, $\bar{X}=5$, $S_x=2$ e $S_e^2=3$. Fare il grafico della retta e calcolare la previsone \hat{Y}_{n+1} per $X_{n+1}=11$. Con l'intervallo di previsone verificare se il valore osservato $Y_{n+1}=-3$ e' anomalo.

Soluzioni

1) bisogna costruire la matrice

$\dot{x}_j = (x_j + x_{j+1})/2$	f_j	F_{j}	$X_j = n_j \dot{x}_j$	$X_{(j)}$	A_{j}	Q_{j}	P_{j}
5 17.5		$0.6 \\ 0.7$	150 87.5		87.5 237.5		
37.5	0.1	1	562.5	562.5		1	1

La classa mediana e' la prima essendo $F_1 \ge 0.5$. L'indice di Gini assoluto diventa G=0.58 e avendo $G_{\max}=(3-1)/2$ quello relativo g=0.29, e' medio basso

- 2) La matrice di frequenza (assoluta) di perfetta indipendenza e' data dal prodotto delle frequenze marginali come $n_{ij}^*=n_i\,n_j/n$, quindi $n_{11}^*=0.43,\,n_{21}^*=1$, ecc.. La matrice di perfetta dipendenza e' data da UNA matrice diagonale, con somma dei valori uguali ad n, ad esempio, quella con dipendenza negativa e' $n_{13}^{**}=3,\,n_{22}^{**}=7,\,n_{31}^{**}=11$.
- 3) La funzione binomiale B(0.4,15) ha 16 valori x=0,1 ... 15 e media $\mu=6$. La probabilita' cercata diventa $P(x \le 4|x \le 7)=P(x \le 4)/P(x \le 7)$, ed approssimando alla normale N(6, 3.6) si ha $P(x \le 4) \approx P(z \le -1.05) = 15\%$, ecc..
- 4) La media E(z)=1+2E(x)-E(y)/3=1, la varianza V(z)=4V(x)+V(y)/9=4.111
- 5) L'intervallo di confidenza approssimato al 95% per la differenza delle medie in campioni non normali e'

$$\hat{\delta}_{1,2} \approx (1 - (-2)) \pm 2\sqrt{6/12 + 9/12} = [0.76, 5.24]$$

da cui si Rifiuta l'ipotesi di medie uguali (c'e' disomogeneita'). Il valore "critico" di n e' quello per cui, a parita' di condizioni, l'estremo inferiore dell'intervallo eguaglia zero, quindi $3=2\sqrt{15/n}$ da cui $n\approx 7$

6) La retta e' inclinata negativamente a partire dalla intercetta $\alpha=1$. La previsione e' $\hat{Y}_{11}=1-0.5*11=-4.5$ il suo intervallo di confidenza approssimato al 95% e' $\hat{Y}_{11}\pm 2\,S_e$ =[-1,-8]. L'intervallo esatto sotto ipotesi di normalita' e regressori deterministici e' $\hat{Y}_{11}\pm t_{0.025}(n-2)\,S_e\sqrt{1+1/n+(X_{11}-\bar{X})^2/(n*S_x^2)}$ piu' largo. Il valore osservato -3 non e' quindi anomalo.